

Emily Perry
SUPERVISOR: LUKE BARSBY
SECOND SUPERVISOR: SHAUN REEVES

Evaluation of
Narrative Tools and
Systems for Game
Writers
GDEV60001 GAMES DEVELOPMENT PROJECT

Contents
Key Words ... 2

Abstract ... 2

Introduction .. 3

Aims and Objectives .. 4

Literature Review .. 5

Games and Narrative .. 5

Narrative Models in Games .. 7

Narrative Delivery and Systems .. 9

Narrative Development and Tools .. 11

Research Methodology ... 14

Results and Findings .. 18

Section 1 - Prior Experience .. 18

Programming Experience .. 18

Game Engine Experience .. 18

Section 2 - System Usability Scale ... 20

System Usability Scale ... 20

Section 3 – General Feedback ... 22

Overall Improvement Feedback .. 22

Approachability Feedback ... 23

Improving Approachability .. 25

Bug and Error Reporting ... 26

Discussion and Analysis... 28

Conclusion ... 33

Recommendations .. 35

References .. 36

Appendices .. 39

Appendix 1 – Methodology Materials .. 39

1.1 – Social Media Pitch (X Thread) ... 39

1.2 – Manu-Scriptwriter Testing Manual .. 39

1.3 – Testing Questionnaire .. 51

Appendix 2 – Results ... 53

2.1 – Research Data .. 53

Key Words
Narrative, Story Scripting, Cutscene, Tools Development, User Experience, Usability

Abstract
Despite modern video games using increasing amounts of narrative elements in games, writers rely

on programmers to implement their stories for them, which leads to a divide between the writing

and writer. Better narratives could be implemented into games by removing this divide and allowing

writers to implement their stories directly, without the need for programming or development skills.

This paper considers the development of a narrative tool which is easy to use for writers without

experience in programming or game development, and how narrative tools can be improved in

future to further empower writers while keeping usability in mind. By researching the elements and

requirements of narratives in games and considering existing approaches to narrative tools and

dialogue engines within the wider game industry, a method of narrative scripting is proposed and

developed which makes use of natural language commands in English.

A study was conducted with the hypothesis that natural language scripting is easier for writers to use

and understand, using a plugin of this system for the Unity Engine within a simple framework which

provides a movable player character that can interact with static objects, and a small set of dialogue

commands. The usability and points of improvement for the system was determined using a

questionnaire sent to participants after using the tool to create a short scene. It was determined

that the system had an above average usability score, and that the documentation for the system

combined with the natural language element was appealing to use. However, strict grammatical

requirements were detrimental for some participants, and other approaches are worth researching

for comparative purposes in future.

Introduction
One of the most common tools in use for writing dialogue are spreadsheets (Bateman, 2021), or

separate text files and documentation that require a developer to implement separately from the

writer (Kauhanen, 2009). This requires back and forth between writers and developers every time

edits are needed, or if a scene wasn’t implemented correctly. This also requires liaison between the

two disciplines regarding what is achievable within a given engine, forcing compromises in the

creative vision for the game due to a possible lack of communication or transparency between

developers and writers. Ultimately, this leads to a slower workflow for writers implementing

narratives within games.

This system of work also requires a writer to have experience within the games industry. Ince writes

in the introduction to his book (Ince, 2009) that a studio once expressed to him that working with

writers without experience within the industry is a struggle. He theorises that their issue was not

related to the quality of writing, but their lack of development knowledge and the lack of resources

within the studio to accommodate for the change in discipline. This attitude towards games within

the industry greatly limits who can work within it, requiring writers have experience with the game

development process that they might not be able to acquire due to a lack of interest in training, and

makes the field more difficult to get into. Supporting writers regardless of experience would greatly

improve the diversity of writers hired to work on games, which could allow for more creative or

artistic works within the field.

While various tools programmers within the industry have reported different methods and tools that

work well for writers within their development teams (Gregory, 2014; Kipnis, 2014; Birke, 2015;

Armstrong and Ewing, 2017), and there has been some research into the development of story

scripting (Mclaughlin and Katchabaw, 2006; Zhang, McLaughlin and Katchabaw, 2007) there is a gap

in the area regarding research into the usability of tools and systems that are easiest for writers

without experience within the industry to understand and use.

The lack of development in this area compared to other disciplines within game development is odd,

especially when considering the role narrative plays within games. In Ip’s analysis of a set of

commercial games (Ip, 2011), he found that up to 28% of a game’s total game time could be

dedicated to forms of narrative delivery, and up to 70% of all narrative in the studied games is

delivered through cutscenes, text, or prompts. Enezi and Verbrugge (Al Enezi and Verbrugge, 2023)

found that players benefitted from and found greater enjoyment in playing a stealth game with

randomly moving guards and contextual dialogue barks that communicated their actions, while Toh

(Toh, 2023) found overall that players enjoyed exploring the story in narrative games more than

playing the game itself. Overall, there is evidence to show that a game’s narrative benefits player

enjoyment, so filling this gap in research towards writer friendly tools would aid in the development

of games with better narratives.

Aims and Objectives
The aim of this study is to propose and develop an extensible, writer friendly tool for directing

narratives in games, and determine what can be done to make the field more accessible to writers

without experience in programming or game development.

To do so, the following objectives should be met:

Objective 1: Research the presentation of narratives in games.

Carry out a study of how narrative is presented within interactive fiction and games, and the

features required to produce these narratives within a game engine. This should consider

both static and dynamic elements used to convey dialogue, stories, or scenes and convey

information to the player.

Objective 2: Research existing writer friendly tools.

Consider how elements of these systems are supported within game development editors

and tools to allow for complex behaviour and stories, determining the advantages and

disadvantages of different tools in use within commercial and proprietary game engines,

focusing on usability for writers and non-programmers and considering compromises

regarding the technical implementation.

Objective 3: Implement common narrative features into a simple system.

Design and develop a simple, user-friendly narrative tool for non-programmers, which

implements a baseline narrative engine, a framework for simple narratives to be written

into, and a simple tool or method through which writers can interface with the engine and

develop their own narrative scenes within the framework.

Objective 4: Evaluate the usability of the developed system for non-programmers.

Determine the usability and approachability of the developed system for writers with

varying degrees of experience within the industry, using a reproducible testing method

which can be applied to other types of tooling than the system developed.

Objective 5: Consider wider applications for this research.

Use the results of testing and user feedback to determine how developers can make better

game engines and tools for creatives and non-programmers and allow for more creative

works within video games by supporting these disciplines.

Literature Review

Games and Narrative
Whether video games have narrative is a long-standing topic of debate between ludologists and

narratologists. In an article following on from his thesis, Juul (Juul, 2001) argues that many computer

games contain narrative elements, but that you cannot have a continuously interactive story. His

thesis (Juul, 1999) follows the definition that narratives are a linear, fixed chain of events, while

games are interactive and non-linear – works can be created with alternating narrative and

interactive elements, but these cannot be considered true interactive fiction.

This is corroborated by Aarseth in his book (Malloy and Aarseth, 1998), who makes the argument

that a football match and a story both consist of a succession of events, but that the actions within a

football match are not narrative actions. He uses the term ergodic to refer to a situation in which a

chain of events has been produced by the nontrivial efforts of one or more individuals or

mechanisms, going on to argue that if narratives consist of description and narration, then Pac-Man

has description in the images used to represent visual elements of the game, and ergodics as the

forced succession of events, but it does not have narration inbuilt into the game .

Arguing against the conclusion that games are not narratives, Jones writes (Jones, 2008) that Juul

assumes that narrative must always be a static artifact with the intention that the narrative will

always be experienced in a particular manner, preventing works from having emergence or creativity

as its purpose. Following this assumption, the audience is ignored as an independent entity with

their own knowledge and experience that may consume the text in an unintended manner. He then

adds that narrative is built by both the author and the audience, between the setting, characters,

and plot, and how the reader reconstructs and reinterprets the writing – a split which is also present

in the consumption of games such as SOCOM 3, which presents the moral idea that killing “terrorist”

non-player characters (NPCs) is justified and “civilian” NPCs are not, while allowing Jones the

freedom to think outside of the logic of the game and interpret it through his own values. Therefore,

the argument that games cannot have narrative elements due to their interactive, emergent

elements is disproven, where emergence is necessary for the discursive level of any narrative.

Despite this, Juul argues that the relationship between the reader of a story and the player of a

video game is completely different, as the reader can only experience the plot as an outsider,

experiencing a story as a prior event, while the player of a game is also able to undertake a role

within the game itself. His thesis argues that interactive fiction is a utopian idea and presents an

alternative to the desire for games to have content close to a novel – a hypothetical game that

emphasises flexibility and possibilities. He notes that this would have a large amount of complexity

which could not be readily simulated but suggests that this could be circumvented by making use of

a program similar to Eliza, an early therapist program which responds to user inputs with simple

questions to prompt further details (Weizenbaum, 1966) – ideally, anything that can give the

impression of intelligence, rather than fully modelling it.

Façade, an interactive drama, is a recent example of innovation in this field. The player is given the

freedom to influence how events play out, parsing natural language inputs as dialogue and

rewarding the player with information or progression within the story, reacting to the input text

where possible. In their paper discussing the director system used to drive the plot, Mateas and

Stern (Mateas and Stern, 2003) describe the system as generative in the sense that it mixes and

sequences pre-determined behaviours, but it does not generate those behaviours itself. It also does

not achieve general purpose natural language understanding, focusing on set phrases that fit within

the environment and ignoring or sometimes misinterpreting anything which falls outside of this pre-

determined framework. Therefore, it cannot be considered truly interactive fiction on its own,

according to Juul’s definition.

In a more recent paper, Aarseth reflects on his previous work and argues that reducing the argument

down to the idea that games do or do not have narrative is “unnuanced, untenable, and

unproductive” (Aarseth, 2012). He considers that games and stories share several elements based on

a hierarchical theory of narratology, which he breaks down into the world and its agents, objects and

events. He compares this to a model by Jenkins (Jenkins, 2003), who describes categories of

narrative as spatial, enacting, emergent and embedded, in which emergent narratives are not pre-

structured events, but take shape through the gameplay itself, such as in The Sims. Aarseth argues

against the idea that emergent narrative classifies as any interesting experience in a game, as this

definition has no limit to the point that it becomes hard to distinguish narratives from other worldly

experiences.

However, Jenkins also introduces his paper (Jenkins, 2003) by echoing the claim that not all games

tell stories, suggesting that simple graphic games such as Tetris do not lend themselves to narrative

exposition. This contrasts the abstract interpretation of the same game by Murray in her book,

Hamlet on the Holodeck (Murray, 2017), who compares the tension of clearing lines as comparable

to the overtasked lives of Americans in the 1990s, suggesting that the spatial ideas represented by

the game could be represented in other mediums such as dance, in which this kind of association is

more easily formed due to the humans that enact them. However, Jenkins argues against this

interpretation, noting that while some ballets tell stories, storytelling is not an intrinsic or defining

feature of dance as Murray suggests.

In his article, Juul (Juul, 2001) also considers that Space Invaders has a prehistory suggested in the

title that the player must fight back against, but that it is impossible to restore the initial state of a

world without invaders. Therefore, while the player is fighting to realise an ideal sequence of events,

the act of playing the game is not this sequence. Juul concludes that some games use narratives for

some purposes and suggests that his original claim that games and narratives are completely

unrelated is untenable. This interpretation returns to Aarseth’s idea (Malloy and Aarseth, 1998) that

games have elements of narration and an ergodic succession of events, but no inbuilt narration.

Simons suggests in his own article (Simons, 2007) that the difference between a narrative and a

game is merely a matter of perspective, that game theory and narratology converge at the level of

history or story. She suggests that narratologists use the concept of kernels and satellites to

distinguish between necessary events and events that, if removed, would not remove coherence or

prevent the story from being recognisable. Aarseth also states (Aarseth, 2012) that satellites define

the discourse, but the kernel is a key point of the story that can’t be removed. Simons continues that

to identify kernels, a narratologist must look at a story retrospectively, while a player’s perspective is

prospective, as the outcome of the game is still hidden in the future. She argues that the logic of

narrative is moving towards the conception of narrative as an assemble of characters, settings and

actions - a similar breakdown to Aarseth’s model.

In his book, Domsch (Domsch, 2013) echoes a claim by Ryan (Ryan, 2006) that there is an elective

affinity between computer games and narrative that explains why some but not all games have

narrative, to which he adds that this affinity is explained by a common element of both fiction and

games: rules, or suggestions to assume that something is the case. In fiction, elements are referred

to as if they exist, while games follow rules as if they are necessary – life has non-negotiable rules in

the form of physics, but there are no restrictions on what a person can do in the same way that a

player has restrictions on where they can move or what they can say.

Considering narratives and stories in games, Ryan later considers (Ryan, 2009) the idea of narrative

games versus playable stories and how they reflect the definition of ludus and paidia, different types

of games. Paidia games refer to building imaginary scenarios with toys, with spontaneous rules and

no specific goal, which she compares to a playable story in which the purpose of the player is not to

beat the game, but to observe the evolution of the storyworld, such as in The Sims. Ludus games are

transformations of abstract playfields into concrete fictional worlds with recognisable objects and

characters, which is comparable to narrative games in which the player plays to win, and the story is

a lure into the game world, such as in Grand Theft Auto.

Narrative Models in Games
The book Hamlet on the Holodeck (Murray, 2017) uses the holodeck from the Star Trek series as a

reference for thinking about the future of interactive narratives – a system which can project a

holographic world and people that can be interacted with as if in real life, telling the user stories

with typical literary genres as if they starred within it. Murray considers digital environments to be

procedural and participatory, or interactive, as well as spatial and encyclopaedic, or immersive.

Interactive environments exhibit rule-generated behaviour that responds to input and are immersive

in their power to represent navigable space and their ability to store and retrieve vast amounts of

data.

In her article, Ryan (Ryan, 2009) states that it would take an incredibly advanced artificial

intelligence to process the user’s inputs and integrate this into a creative, well-formed plot,

discussing compromises between the science fiction holodeck and existing technology. She

emphasises three features of the holodeck described in Murray’s book: the natural interface, in

which users interact with the computer generated world in the same way as the real world;

integration of user action within the story, or the creation of narrative from a user’s choices; and

dynamic creation of the story, computing and responding to the effects of those choices in real time

and updating a model of the fictional world accordingly.

Rules of Play, a book covering design fundamentals in games (Tekinbas and Zimmerman, 2003), uses

the structure of an embedded or emergent narrative to represent ways that a game system

produces narrative, as defined by Leblanc in his GDC talk (LeBlanc, 2000), in which he describes

emergent narrative as short vignettes, considering gameplay to be largely emergent, and embedded,

authored narrative as a frame for interaction, limited to short, discrete, non-interactive moments.

The book adds to these definitions, building from Jenkin’s definitions of embedded, emergent,

spatial and enacting narratives to define embedded narrative as pre-generated content that exists

prior to interaction with the game, usually providing motivation for the events and actions of the

game. On the other hand, emergent narratives arise from the set of rules governing interaction with

the game system to provide an experience unique to each player – a constrained form of user action

affecting the fictional world.

Different genres of game emphasize specific types of narrative – Rules of Play uses The Sims as an

example, having a setting that resembles suburban southern California as embedded narrative which

contextualizes the emergent narrative events that occur during play. These events are considered by

Ryan previously (Ryan, 2009) to fall under a playable story, in which the player receives pleasure

from coaxing a good story out of the system. On the other hand, adventure games such as The

Secret of Monkey Island consists primarily of an embedded narrative with pre-scripted descriptions,

dialogue, interactions and actions, in which the player has a limited emergent experience based on

the order in which they progress and figure out puzzles. Aarseth concludes in his book (Malloy and

Aarseth, 1998) that “the standard concepts of narratology are not sufficient to explain the literary

phenomena of adventure games” or their differences from other literature.

This concept of embedded narrative in games is different to the narratological definition, as

discussed in Wei’s paper (Wei, 2010), who highlights a theory by Nelles (Nelles, 2020) that shifts in

narrator, narrative or diegetic level, and reality mark the border between embedded and embedding

narrative. Wei divides these categories further into horizontal embedding, vertical embedding, and

modal embedding. Horizontal embedding refers to a shift in narrator, but not narrative level, such as

when the narration is handed to an in-game character, the player, an object such as a book with an

uncertain narrator, or moved into a flashback, so we hear the main and embedded stories side by

side. Vertical Embedding requires a shift in both narrator and narrative level to create depth in the

storytelling, referring to stories in dialogue, narrative objects such as journals in-game, non-

interactive sequences that do not take place in flashbacks, and voice-over narration. Finally, modal

embedding refers to a shift of the reality or storyworld, such as in dreams, hallucinations, or

alternate dimensions, which can include shifts between game levels with different thematic designs.

Aarseth’s paper (Aarseth, 2012) breaks down narrativity into world, objects, agents, and events,

stating that every game configures these elements differently. Gameworlds are physical or virtual

structures with clear limits and geometry that can be explored directly by an independent agent. The

game world is measured in ludic space, meaning the arena of gameplay, and extra-ludic, referring to

the surrounding, non-playable space. Any objects in a game are categorized in terms of malleability –

static and non-interactable, static and usable, destructible, changeable such as upgradable weapons,

creatable such as crafting attributes into items, or inventible, where the player can create new

objects. Characters can be classified in terms of depth and malleability as well, which he categorises

as bots with no individual identity, shallow characters without much personality, and deep

characters who change as the story progresses. Finally, he categorises events using the concept of

kernels and satellites, referring to pure story, dynamic satellites in a playable story, dynamic kernels

with multiple paths, and no kernels for a pure game.

In his paper, Lindley (Lindley, 2005) discusses different ways in which games structure narratives. He

considers that a branching narrative refers to the change in how something is narrated, branching

plot structure refers to alternative pathways through the representation of an overall plot, and

branching story refers to the interactive selection of a representation of a story based on predefined

elements. He suggests that actions in a game form a version of the concept of fictive blocks, as

proposed by Mackay (Mackay, 2017), which are basic fragments or units of fictional or narrative

significance which can be strung together to form a higher-level narrative. In games, fictive blocks

have a tangible, predefined form as the constrained set of valid game moves, which then have a

bearing on the player’s play style.

Lindley also considers various story structures, such as the three-act restorative structure (Rush,

Dancyger and Keyt, 2023), in which a conflict is established, the implications are played out, and the

conflict is resolved. He suggests that key scenes during these acts are typically achieved using

cutscenes and non-interactive sequences, while the story itself is mostly a structure imposed on top

of gameplay. He suggests that some elements that would satisfy story preferences in a game would

be outside the scope of user-selectable moves, and that current design conventions for these to

support dramatic performance and immersion are of limited effectiveness and poorly developed,

arguing that good game design achieves better integration of the gameplay and narrative structures,

but not all players will accept the approach taken.

In an article on narrative structures in games, Ip (Ip, 2011) suggests that simple games do not require

extensive backstories, which have variable effectiveness in games. However, common techniques for

narrative delivery included backstories, linear and branching game structures, the portrayal of

emotion and reactive environments, and narrative structures such as the monomyth (Vogler, 1985;

Campbell, 2008), with technical deliveries in the form of on-screen text, audio cues and various

combinations of the above with gameplay and cutscenes. Ip found that narrative never exceeded a

quarter of the total experience of the studied games.

Regarding nonlinear approaches, Ip considers that the player is given the impression of a greater

degree of control than is possible, and that interactive cutscenes is one way that this choice is

provided to players. However, branching structures are limited by the amount of content needed for

each decision, plot changes, and maintaining a coherent story, and more work is necessary to keep

up with audience demands in this area as hardware becomes more powerful. Despite this, he also

found that there was a low ratio of kernel to satellite events and considers that key story events may

not be sufficiently amplified by supporting scenes. Of the games studied, he noticed that linear

games were prevalent but sometimes used branching structures to provide a greater sense of

freedom in confined sections or provided side-quests as minor additions to create the illusion of

branching.

Eladhari discusses structures in interactive narratives in her thesis (Eladhari, 2002), which Lindley

summarizes as trees, exploratorium games with linear structures that allow exploration of the

surroundings, parallel plot structure, nodal or dead-end structures, a modulated dynamic labyrinth

structure where new interactions become available after different parts of the story have been

experienced, open structures where links between places are open, and open structures with no

story arc. Lindley then suggests that these can be modelled using formal graph theory, made up of

nodes, links between nodes, and constraints on links such as directed links, conditional links, and

restricted nodes. Once represented as a graph, the overall shape of an interactive narrative can be

seen from the high-level topology. He also considers that nodes could contain any kind of interactive

structure, allowing for nested substructures.

Eladhari’s thesis defines the concept of object-oriented story construction as allowing all (relevant)

objects in the world to have integrity and contain their own stories, functions, conditions, possible

developments, and counter reactions. Having integrity means that the object’s information is only

available through the object itself and its conditions – an NPC cannot spill information that ought to

arise later in the intrigue because the player cannot ask for it. Story driven games consist of a code

level in the engine, framework, and game-specific code, the story level for narrative content, which

she models using a flow chart, and the discourse level, which characterises the told order of the

story as the player experiences the game, and private story discourses regarding individual objects.

Narrative Delivery and Systems
In his book for narrative skills in games, Bateman (Bateman, 2021) discusses various methods of

narrative delivery through which a writer can get a story across to the player. He considers that

different game types support different techniques for advancing the narrative, and the techniques

used take shape from and reinforce the games they are part of to support player immersion.

Delivery methods discussed include:

• On-screen text, used for non-subtitled dialogue, tutorials, and on-screen artefacts such as

notes, scrolls or books.

• Recorded dialogue (and subtitles), which can play at any time during gameplay or during

cutscenes and scripted events. Some dialogue may have multiple variants.

• Static images, drawings, paintings, or computer generated (CG) stills. These can be used

during loading or as part of a cutscene.

• Camera cases, or scenes created through camera movements within the game world, such

as flybys.

• In-engine cutscenes which give a writer total control over events, allowing for visual polish

and actions that cannot occur in-game.

• Scripted events, or brief moments where the game takes control of the camera or action to

force certain events, while the player retains control of their avatar.

• FMV cutscenes and pre-recorded visuals, referring to computer graphics imagery (CGI) or

live-action video, most useful for displaying events that the game engine can’t handle.

Cheng discusses interactive cutscenes in his paper (Cheng, 2007), in which players must quickly press

a button to affect the outcome of an action. He criticises this solution as a regression to interactive

movies, where the player loses a sense of control in comparison to the standard mechanics of the

game, rather than gaining it. However, he also suggests that these interactive cutscenes provide

representational agency, where the player experiences agency in terms of a fictional figure, and

suggests that having these rendered in-engine and keeping a uniform aesthetic and relative

smoothness to transitions sustains the illusion of a coherent game world and improves this sense of

agency.

He also considers a form of longform scripted events in which the player is presented with narrative

information while retaining control of the player. He suggests that these require designers to

balance the delivery of information with player agency, as the player can move away from a

conversation and miss important information, since attention is not forced as in non-interactive

sequences. However, he also suggests that this can improve immersion by subverting earlier

instances of interactive scripted events, such as by removing elements of control if the player

character has been tied up.

Bateman’s book also proposes that non-interactive methods run the risk of disrupting pacing, forcing

failures to accomplish a narrative goal which may cause frustration if not handled carefully, as it

removes player choice or denies players the central role. This has the benefit of ensuring that events

in the narrative can occur without interruption, allowing for cinematic use of narrative techniques

commonly found in film and television. In his study, Ip (Ip, 2011) found that up to 70% of a game’s

narrative are communicated through cutscenes, which are frequently used in complex story-based

games. He suggests that cutscenes are becoming a standard method of narration, despite being

criticised as a passive mode of narrative that disrupts the interactive experience.

The book lists different types of dialogue engines that are available in games. In particular:

• Event-driven engines, in which different events trigger different responses. Events can be

triggered by inputs and game state. This can also be used to drive commentary engines,

which produce a stream of chatter based on current game events.

• Topic-driven engines, in which dialogue is triggered based on choices in a conversation. This

can take the form of character scripts, which organise dialogue choices with a single NPC by

a set of conditions, or token-based, in which a player has access to a series of tokens that

they can present to any NPC, such as inventory items.

• Dialogue trees, which are converging and diverging chains of conversation, divided into

segments. These usually create linear conversations as branching trees can cause a

“combinatorial explosion”, becoming costly and inefficient to develop.

One example of an event-driven engine is a dynamic or contextual dialogue system, as discussed by

Elan Ruskin in his 2012 GDC talk (Ruskin, 2012). He discusses existing systems in which enemies react

to the player’s actions as they move across a level or perform certain actions by performing barks

that convey their current state. These barks are usually tied directly to their decision-making and are

used to inform the player, even while enemies are out of sight.

He then describes the system used in the development of Left 4 Dead, a game in which a player and

3 NPC characters driven by artificial intelligence (AI) shoot zombies to survive and complete

missions. Throughout a level, objects are described using tags within the engine which trigger

specific dialogue responses when the AI performs a given action or meets certain conditions. This

concept can also be used to trigger conversations between multiple agents.

The engine used by The Last of Us (Gregory, 2014) builds on this system, adding random

probabilities to prevent repetition in repeated lines, and prioritising events to ensure that only

appropriate reactions occur, allowing traditional barks to interrupt idle conversation when combat

starts. They suggest that the system could be improved with better Boolean logic and branching and

considers that rules could be utilised for non-dialog mechanics.

Narrative Development and Tools
According to Bateman’s book (Bateman, 2021), a writer must work within the capabilities of the

game and the engine, producing their work in such a way as to make the content easy for the

programmers to deal with. This means considering how text will fit onscreen, localisation into other

languages, and file naming conventions for organisation. Localisation issues arise from translated

phrases being longer in other languages or having a completely different meaning, which can be

clarified by annotating lines with writing decisions, highlighting the intention, meaning, or context of

a line, and indicating critical phrases. Annotation also benefits voice actors, as context, emotion, and

emphasis can influence the performance of the line. In his GDC talk discussing dialog tools for

Firewatch, Ewing (Armstrong and Ewing, 2017) mentions that they used pseudo-languages to test

Unicode support and languages with longer phrasing without the need to translate the text, allowing

them to sidestep this issue during development.

Firewatch’s dialogue engine is also based on the system discussed in Ruskin and Gregory’s talks

(Ruskin, 2012; Gregory, 2014). Their dialog tools use a collection of variables stored in Blackboards

and uses a visual scripting graph to listen to and trigger events. Events are viewed from a separate

window to individually edit responses, targets, and other properties, including the type of event

such as dialogue or changing variables. The dialogue itself is written in plaintext using very

lightweight syntax to denote the conversation name, dialogue speakers and content, and choices,

which is then imported into a separate database. The database allows them to track lines,

translations, voice overs, and other metadata during development, and provides functionality to

export lines into excel spreadsheets to produce a full script for voice actors. Bateman suggests that

spreadsheets are easiest for game engines to understand, and useful for organising large amounts of

data, but argues that some writers are intimidated by the format.

Bateman states that interactive scripting doesn’t have one standardized format due to the use of

different game engines, storytelling styles, and differences in linearity – a sentiment agreed by

Despain (Despain, 2020). The use of standard text documentation and prose does have its uses as

information resources for developers, but this style of writing is difficult to import into the engine.

He suggests that screenplay formats are common in mediums with visual and spoken elements,

inspired by stage play formats, which are intended to make information easy to understand within a

short period of time. Games sometimes use a modified screenplay format as a compromise between

human and computer readability, additionally allowing for dynamic elements, conditions and

variables communicated through human readable pseudocode. This style of formatting is best for on

rail narratives, but the script could be modified to accommodate for decisions. Despain suggests

(Despain, 2020) that cutscenes, cinematics, and scripted events are best communicated in this

format due to their linear, non-interactive format.

One solution investigating scripting for cutscenes (Zhang, McLaughlin and Katchabaw, 2007) makes

use of an XML-based specification as a basis from which to add additional elements for video game

cut-scenes, however they suggest that XML isn’t a natural or convenient method to write with

without the use of additional conversion software. Their system also doesn’t cover cutscenes in 3D

spaces, with additional functionality, testing, and platforms falling under future work.

In his master’s thesis, Kauhanen evaluates a similar XML-based system (Kauhanen, 2009), in which a

company developed tools to convert between word and spreadsheet documents and the XML

format used by the game. However, he determined that the system was not intuitive or easy to learn

and understand, and that defining XML rules was more difficult and required additional support.

Kauhanen concludes that a domain-specific language and support with automatic mappings to game

code would be more suitable. He investigates support for narrative scripting and determines a set of

design patterns for game scripting tools to follow:

• Authoring tools should support non-programmers.

• Natural language and familiar, domain specific terminology is more accessible for creative

writers.

• Support reuse of assets across multiple projects.

• Provide a means to quickly playtest and edit a story.

Supporting workflows where automation isn’t possible is highlighted by Birke in his GDC talk (Birke,

2015), in which he briefly discusses the tools used for The Adventures of Bertram Fiddle, who

suggests that he dislikes having users input text directly into a tool as it is error prone, particularly

for non-technical users who need to learn to understand the format. Their solution was to create a

tool that allows users to create the story and interaction within a scene using a sequence of blocks

with instructions that can be edited in the inspector. Additional instruction blocks were created

when requested by developers on the team. He suggested that controlling the types of instructions

that developers could use within the tool reduced errors for the team and saved time. He also

created a timeline based cutscene editor for cinematics to time dialogue for a given conversation

and tweak the duration of different events.

The tools used for The Last of Us (Gregory, 2014), builds on Ruskin’s talk, making use of its own

scripting language with heavy code-style syntax which makes it easier to import into the engine

during runtime for rapid iteration. Dialog files are split up by character and by act where possible, to

allow multiple writers to work on the dialogue at any one time and prevent conflicting work within a

team.

Ink is an open-source narrative scripting language developed for games with a text and choice-based

interface in mind, styled after ‘choose your own adventure’ (CYOA) books and originally developed

for the games “80 Days” and “Sorcery!”. Humfrey discusses how flowcharts and changing the flow

on a word-by-word basis would cause too many connections and too much branching, becoming

unmanageable for the writers. The language uses a set of syntax to identify choices, variables, and

different passages to move to (Humfrey, 2016), later adding support for 3D games to add emotions

that change sprites, directions, animations, and interaction choices (Humfrey, 2017). He makes the

argument that not all writers are this technical, but that there’s little in the games industry that

doesn’t have that requirement.

The Ink editor, Inkle, has been compared against Twine (Interactive Fiction Technology Foundation,

no date) and the paid Celtx scriptwriting software (Clarke and Zioga, 2022), both of which use a tree

and node-based interface to structure narrative, for use during the development of an interactive

film. The study determined that Inkle had better functionality for testing and debugging, able to

detect loose ends and preview the final format. However, they note that the coding required can be

challenging for writers without prior experience, and exporting to HTML was less accessible than

exporting to PDF, as with Celtx, which they concluded was best for their purposes.

The Versu engine was developed by Richard Evans to create interactive stories, focusing on

character interaction and choice, while its scripting language was developed by Graham Nelson,

previously known for his work on Inform, another interactive fiction creation tool (Nelson, 2014).

Prompter was designed with natural language in mind, aiming to achieve faster development and

human readability by making use of scriptwriting structures. Defining characters and scenes for the

engine uses very little syntax based on structured sentences. He estimates that test stories written in

the engine using its original, syntax heavy language (Praxis) took a month to write, while Prompter

allowed the same to be written in a day.

The Novella model (Green et al., 2018) was developed based on work by various ludologists,

including Aarseth’s earlier model (Aarseth, 2012), breaking down elements into world, objects,

characters and events. The model is based on a flow chart, like Twine, starting from an overall Story

that stores an initial and current scenario based around a Context object. Contexts consist of a set of

gameplay rules, which can include flow nodes and graphs, dialogues, and cutscenes. However, the

proposed system was never developed into an authoring environment for game development and

fails to fully define cutscenes, both of which are concluded as future work.

Patel discusses the tools that have been used by Obsidian Entertainment for 8 years, as of her GDC

talk in 2019 (Patel and Szymczyk, 2019), which consists of a dialogue tree, made up of individual

nodes and with the ability to fine-tune the behaviour of each node or branch. She highlights various

quality of life features of the tool, such as automatic spacing, hotkeys, and writing text directly into

nodes, which keep the tool organised and makes workflows faster for quick iteration, while

mirroring the player’s experience. She also discusses the tool’s ability to interface with conditional

scripts and trigger game functionality, which she argues allows conversations to have an impact on

the rest of the game.

In the development of The Witcher 3 (Tomsinski, 2016), quests are structured using a flow chart,

which contain dialogue nodes with nested dialogue flow charts. These link together different

sections and choices, written using a screenplay format. Designers then determine which models are

used within the scene. Dialogue nodes can include quest logic and update variables to affect the

world itself. Separately, a conversation is edited in a timeline tool to specify animation, dialogue and

voiceover timings, camera transitions, and other basic properties necessary for cutscenes, some of

which can be automated from the screenplay to generate a simple scene that can be tweaked later.

Research Methodology
This research poses the hypothesis that writers without prior experience with programming or game

development may find a system which uses a custom narrative scripting language using natural

language sentences to be easier to understand and write with when developing scenes within a

game or game engine.

Due to the gap in research into this area, it would be most beneficial to gather primary research

directly from subjects to contribute to the current understanding of writer friendly narrative tools,

which may inspire further research into the field.

The population for this research includes people above the age of 18, regardless of gender, with an

interest or experience in writing for games or the development of narrative games. Allowing

participants with a range of experience with both writing and games engines or development would

confirm the system’s viability for use in narrative development for games and could provide an

insight into how much their experience, if any, factors in on the system’s usability.

Participants are to be recruited a week before testing, using a mixture of voluntary response

sampling, purposive sampling, and snowball sampling. A short pitch of the concept and what would

occur during testing would be posted on various social media websites, requesting that anyone

interested reaches out for more information to sign up – see Appendix 1.1. The same pitch will be

sent to specific students or alumni of computer science or game development courses, including

programmers, developers, designers and writers, as well as students with an interest in writing,

regardless of formal education in the subject. Participants are allowed to forward the pitch to other

possible interested parties. The expected sample size is 10 participants.

Any volunteers are required to be able to run a copy of the Unity 6 editor and text editor of their

choice to take part. This will be communicated using an information sheet covering the testing

process in detail and what will be expected of these volunteers, as well as ensuring they understand

that they are aware of their right to withdraw and understand how their data will be processed

under the General Data Protection Regulation. To confirm participation, an informed consent form is

required from each subject.

A small artefact is to be developed for testing over the course of 6 weeks, following the design

principles proposed by Kauhanen (Kauhanen, 2009), while keeping the scope of this research in

mind. As discussed previously, these principles focus on support for non-programmers, writer

friendly terminology, ease of asset re-use, and quick debugging tools. In particular, the

implementation should focus on supporting non-programmers and familiar terminology, while

relying on Unity 6 to provide debugging support and use of prefabs to support level creation and

asset reuse, including object placement, which would not be supported by the tool itself.

This is to be developed in C#, using Unity 6, version 6000.0.19f1, and Rider 2022.3.2 as the

Integrated Development Environment (IDE). Unity 6 was chosen over other commercial engines,

such as Unreal Engine 5 or Godot 4, due to having lower system requirements which would make

testing more accessible to low end computers, reliability as a commercial engine, and its use of C#,

which can handle memory using garbage collection and therefore reduce the possibility that a writer

could cause a memory leak unknowingly, an issue which would be difficult to debug without

technical knowledge. Rider was chosen for development due to the researcher’s preference, as it is a

fast, powerful IDE with Unity integration for debugging, making the artefact easier to develop and

test.

Based on various information provided by the literature review, the basis of the artefact for the

purposes of this research is a way to parse and interpret commands in a custom language, while

allowing functions to be defined and implemented separately within C#. Planning for additional

flexibility within the tool would allow it to be used for a variety of different games, without tying the

functionality to any one genre or implementation. The natural language element comes from how

functions are defined, using human readable sentences in which different words, such as nouns or

adjectives, act as input parameters. To increase the tool’s viability for game development,

compatibility with an event driven engine could also be implemented, ideally allowing for use with a

contextual dialogue system, should time constraints allow.

To make use of this implementation, testers would need access to a simple framework, with basic

functionality such as a movable player and the ability to interact with objects using an event-based

system which could theoretically allow for additional events in future. This framework should also

define a set of standard commands within the custom language, decided based on Bateman’s

methods of narrative delivery (Bateman, 2021). To keep scope small, this should focus on on-screen

text and camera cases, as these cover simple use cases without requiring heavy asset usage, as in

the case of pre-recorded visuals, dialogue, or images, which would reduce the amount of additional

assets that might be needed for the artefact.

At the start of the testing period, subjects are to be sent a folder to download using GitHub, which

will include a Unity project containing the scripting language, framework, and some demo scenes

(Figure 1, 2, and 3) to demonstrate what the project can do. This will be provided alongside a manual

for testing, which details how to install Unity, how to locate different elements of the project and

how to access them, links to resources on how to use the Unity editor, and short documentation on

what commands are available to use – see Appendix 1.2. Participants are to be given little other

instructions or guidance, other than to play around with the project and fill out a questionnaire,

provided alongside the link to the project, once satisfied with testing. This testing can occur at home

or using a publicly available computer such as those available at the University of Staffordshire if

possible. The testing period is expected to last one week, though the testing itself should take an

hour or less, including answering the questionnaire. Subjects are expected to test the project

whenever they have time during the testing period, to allow for flexibility around other

responsibilities.

Figure 1 - The Template Scene provided to testers.

This is based on the testing process used by Jon Manning during the development of YarnSpinner

(Manning and North, 2021), an open-source narrative scripting language, in which he provided a

writer, Ryan North, with an incredibly simple Unity Project and a short script demonstrating what

the system could do. North was asked to develop a short demo for YarnSpinner, and to let him know

what he came up with, and he developed a prototype with a playtime of multiple hours as a result.

While testers will not be expected to produce the same amount of content, and North had some

experience with programming and game development as a writer before testing, this approach

appears to be an effective way of judging the usability and approachability of a given tool for non-

programmers.

Figure 2 - A sample Scene, Bedroom, provided to testers.

Manning’s method was intended for use during a development cycle, in which YarnSpinner would be

improved based on feedback from North. However, iteration would require more time than is

available for this research. Kauhanen’s research is more applicable to the topic, previously

performed on existing narrative scripting tools and an investigation of a proprietary system. He

interviewed a professional team before and after the implementation of improved dialogue tools in

their internal toolchain (Kauhanen, 2009). However, this occurred a year apart, which is not possible

either. Alternatively, McLaughlin and Katchabaw tested the usability of their narrative scripting

engine by recreating scenes from film, TV, and existing games (Mclaughlin and Katchabaw, 2006;

Zhang, McLaughlin and Katchabaw, 2007), which proved the functionality of the system, but did not

necessarily prove its usability for non-programmers. Therefore, testing with writers directly using

Manning’s method would be a more accurate way of proving this hypothesis in the time allotted,

despite being unable to iterate on the project in this time.

Figure 3 - A sample script from Bedroom, demonstrating dialogue and camera functions.

Once subjects have concluded testing, they will be asked to answer a questionnaire, using a mixture

of quantitative and qualitative questions – see Appendix 1.3. These questions were screened during

the ethics review performed by the University of Staffordshire in advance of the development and

testing period.

For quantitative data, the questionnaire asks after existing experience with programming and game

development, as well as ask respondents to rank their experience with the tool using the System

Usability Scale (Brooke, 1996), which asks a set of questions using a 5-point scale to determine how

much a given respondent agrees with a statement, from “strongly disagree” to “strongly agree”. This

scale is commonly used to broadly judge the usability of software and calculate an overall usability

score, allowing possible avenues of improvement in future development or research to be

determined. Comparing usability with a subject’s experience with game development or

programming tools should provide a way to put each subject’s feedback into context.

For qualitative data, the questionnaire will ask after the respondent’s opinions of the tool, including

what made the tool feel approachable to them, and how they felt it could be improved. Qualitative

data is necessary to determine actionable feedback for improvement, where the System Usability

Scale doesn’t provide guidance, outside of general categories. The results of these will be sorted and

analysed using thematic analysis, as originally proposed by Braun and Clarke (Braun and Clarke,

2006), to allow the data to be analysed in a quantitative way.

In theory, this research methodology should be repeatable for alternative narrative tool

implementations, which could determine the usability of narrative tools in comparison with other

tools researched using similar methods. However, it is limited by various factors, such as the lack of a

single controlled environment for testing, which could allow for uncontrolled variables to impact the

testing process. Future research may wish to standardise the testing conditions to reduce this.

Additionally, the varied sampling methods could allow for sampling bias, particularly as the chosen

sources are poorly defined or too wide, which could be solved by focusing on a more specific

sampling frame or a selection of sampling frames to allow for variance without losing control over

the variables. Finally, while the estimated number of participants was based on the timeframe and

scope available for this research, 10 participants is not enough to allow for variance within the

sample while also allowing for statistical significance, which could be improved with a larger

research scope and more time allotted for sampling.

Results and Findings
The final sample included 15 participants, each of which filled out the provided questionnaire, which

can be viewed in Appendix 1.3. The full set of data can be viewed in Appendix 2.1.

Section 1 - Prior Experience
The first section of the questionnaire evaluates the respondents experience with programming and

game engine use.

Programming Experience
How much experience do you have with writing in a programming language on a scale of 1-5,

where 1 is no experience, and 5 is professional experience?

Figure 4 - The programming experience reported by each respondent, on a scale of no experience (1) to professional
experience (5).

Question 1 (see Figure 4) focuses on experience with programming languages in general, asking each

participant to rank their experience with programming on a scale of 1 to 5, from zero experience to

professional experience. The average rating across each respondent was 3.2. Most respondents, four

in total, ranked themselves with an experience of 4, while the least respondents, two in total, ranked

themselves with an experience of 1.

Game Engine Experience
Did you have any experience with any of the following game engines before taking part in this

study?

Question 2 focuses on each respondent’s experience with various game engines. The available

engines were picked based on popular engines within the games industry for indie development,

including Unreal Engine and Unity, as well as Scratch, which is an educational introductory engine

which may have been taught to participants during early education. Ren’Py and Twine were included

due to their status as engines for developing narrative games, each using a different type of tool. An

option for participants to suggest other engines with which they have experience was also included.

Figure 5 - The game engine experience reported by each respondent.

13 respondents answered this question (see Figure 5), leaving 2 respondents reporting a lack of

experience in any game engine. The most popular engine recorded was Unreal Engine with 11

respondents, closely followed by Scratch with 10 respondents, and Unity with 9 respondents. Game

Maker only had 1 user from the sample, while Ren’Py and Twine, which are both tools for narrative

games, only had two users. Overall, each engine had at minimum 1 respondent with experience in

that engine, or 11 at most, with a range of 10 and a mean of 3.46 excluding the two without

experience, or 3 including those without experience.

The 3 engines reported under the ‘Other’ category, includes ‘proprietary engines’, Roblox Studio and

Inkle. While further inferences cannot be made based on the listed proprietary engine, Roblox

Studio uses Luau for scripting, which is a text-based multi-paradigm language, and Inkle is an engine

agnostic narrative scripting language, as discussed during the literature review.

Section 2 - System Usability Scale
The second section covers questions from the system usability scale, aiming to rank the overall

usability of the developed artefact, according to the respondents. Each question within this section

asks the respondent to rank how much they agree with each statement, from 1 to 5, where 1

represents strongly disagreeing, while 5 represents strongly agreeing. 3 represents neither agreeing

nor disagreeing with the statement.

System Usability Scale
The combined data for the System Usability Scale questions can be seen in Figure 6. Exact

distributions and data can be seen in Appendix 2.1.

Figure 6 – The distribution of all answers to the SUS questions.

1

1.5

2

2.5

3

3.5

4

4.5

5

Distribution of All System Usability Scale Ratings

I think that I would like to use this system frequently.

I found the system unecessarily complex.

I thought the system was easy to use.

I think that I would need the support of a technical person to be able to use this system.

I found the various functions in this system were well integrated.

I thought there was too much inconsistency in this system.

I would imagine that most people would learn to use this system very quickly.

I found the system very cumbersome to use.

I felt very confident using the system.

I needed to learn a lot of things before I could get going with this system.

Questions in the SUS are designed to alternate between positive and negative sentiments. The

individual data for questions for each sentiment are grouped and displayed in Figure 7 and 8.

Figure 7 – The distribution of answers to positive tone questions on the SUS.

Ratings for these questions tend positively, with averages at 3.47, 4.2, 4.27, 4.27, and 3.93

respectively. The mode for each is 4, 4, 5, 5, and 4, showing that most respondents agreed or

strongly agreed with each statement.

In SUS01, asking whether respondents would use the system frequently, only 2 respondents voted in

disagreement, with one vote for 1 and 2.

In SUS07, asking whether respondents thought the system would be quick to learn by most, only one

respondent voted in disagreement with a 2.

1

1.5

2

2.5

3

3.5

4

4.5

5

Distribution of System Usability Scale Ratings (SUS 1, 3, 5, 7, 9)

I think that I would like to use this system frequently.

I thought the system was easy to use.

I found the various functions in this system were well integrated.

I would imagine that most people would learn to use this system very quickly.

I felt very confident using the system.

Figure 8 – The distribution of answers to negative tone questions on the SUS.

Ratings for these questions tend negatively, with averages at 1.67, 1.8, 1.2, 1.6, and 2 respectively.

The mode for each is 1, 1, 1, 1, and 2, showing that most respondents strongly disagreed with the

statements.

In SUS04, 1 participant voted 4, agreeing that they would need the support of a technical person.

In SUS08, 1 participant voted 5, strongly agreeing that they found the system cumbersome to use.

In SUS10, 1 participant voted 4, agreeing that they felt they would need to learn a lot of things

before they could get going with the system.

Section 3 – General Feedback
The final section of the questionnaire focuses on qualitative data, relying on user feedback to

determine specific advantages, disadvantages, or improvements that could be made to the tool.

Full responses to each question can be viewed in Appendix 2.1.

Overall Improvement Feedback
How could the narrative tool be improved?

Elements of each response were categorised into a set of common themes, using an inductive

approach, as shown in Figure 9.

- Plugin improvements cover any custom tooling within Unity.

1

1.5

2

2.5

3

3.5

4

4.5

5

Distribution of System Usability Scale Ratings (SUS 2, 4, 6, 8, 10)

I found the system unecessarily complex.

I think that I would need the support of a technical person to be able to use this system.

I thought there was too much inconsistency in this system.

I found the system very cumbersome to use.

I needed to learn a lot of things before I could get going with this system.

- Framework improvements cover any features which rely on an engine for implementation,

which could be included within the framework.

- Documentation improvements cover any changes or additions to external documentation

or demo scenes.

- Technical improvements cover engine agnostic features which should not rely on either

Unity or the framework.

- Feature improvements cover improvements to existing features that were implemented

into the framework.

- Debugging improvements covers the improvement of debugging tools or error messaging.

Figure 9 – A chart showing the proportion of responses containing common themes within feedback.

Two responses did not report any improvements. For the remaining responses, 31% of responses

covered a desire for additional features, such as the ability to play sound effects or animations. 26%

of responses requested technical improvements, such as branching dialogue or narrative variable

support. 18% cited improvements to the plugin itself, including porting the plugin to Unreal Engine,

editing text files within the editor, and improved tooling for adding new emotions. Documentation

improvements was also requested by multiple respondents, taking up 17% of the responses in total,

asking after video tutorials, more specific information on how the event system worked, and

suggesting that it highlight the fact that sentences are case and punctuation sensitive.

Approachability Feedback
In what ways was the tool approachable or easy to understand?

Elements of each response were categorised into common themes using a deductive approach,

based on Kauhanen’s design principles for narrative tools, as well as two additional categories for

provided documentation and features in the framework. The data is visualised in Figure 10.

Plugin
Improvements

18%

Framework
Improvements

31%

Documentation
Improvements

17%

Technical
Improvements

26%

Feature
Improvements

4%

Debugging
Improvements

4%

How could the narrative tool be improved?

- Supporting non-programmers covers elements of the tool which reduced the amount of

technical knowledge necessary for use.

- Natural language and terminology covers the structure of the language or terminology used

for features of the tool.

- Asset reuse is related to supporting non-programmers, specifically covering the use of

existing assets to aid development.

- Playtesting and debugging covers functionality used for bug fixing and, error

communication, and editing.

- Features covers framework functionality which is not engine agnostic.

- Documentation covers the external documentation and demo scenes.

Figure 10 - A chart showing the proportion of responses containing common themes regarding what made the tool
approachable.

29% of responses cited the testing manual as a useful reference or mentioned that the demo scenes

helped them to understand how the tool worked. 26% of respondents highlighted elements of

automation, such as the ability to make any object into an ‘interactable’ object that can be used

within a narrative script using a right-click menu command, or the use of text files as a format.

13% of responses cited the tool’s use of natural language as approachable, due to the

understandable formatting and ease with which it could be written, similarly to a script. Another

13% cited the reuse of assets, ranging from use of prefabs to the general organisation of the

framework reducing the amount of time spent getting lost within navigation.

10% of responses cited specific features within the framework as powerful tools within the simple

framework that allow a writer to do a lot with a little, barks and camera options specifically. In terms

of playtesting and debugging, 9% of users cited using a mixture of documentation or the existing

demo scenes to figure out what went wrong.

Supporting non-
programmers

26%

Natural Language &
Terminology

13%

Asset Reuse
13%

Playtesting and
Debugging

9%

Features
10%

Documentation
29%

In what ways was the tool approachable or
easy to understand?

Improving Approachability
In what ways could the tool be improved to be more approachable or easier to understand?

Elements of each response were categorised into the same themes as in question 14, following

Kauhanen’s principles once more. The data is visualised in Figure 11.

Figure 11 - A chart showing the proportion of responses containing common themes regarding how the tool could be more
approachable.

2 responses did not report any improvements. Two other responses copied or referred to answers in

question 13, which were then categorised under this question as a result.

42% of responses suggested that improvements to the documentation provided would make the

tool more approachable, including in-depth API documentation for developers, an in-depth tutorial

scene and documentation within the Unity Editor, better specification regarding grammar and

smaller features such as text colour. 25% of responses cited a need for additional support for non-

programmers, which includes editing text files within Unity to reduce the amount of time spent

swapping between windows, or the use of alternative front-facing software made specifically for

editing files for the system.

13% of responses discussed improvement of error logging to aid capture and debugging in the case

of incorrect syntax or other errors, and that the technically of existing error logging made debugging

harder to approach. Another 12% referred to the natural language element of the tool in some form,

citing strict punctuation and grammar requirements, or the possibility of a visual, block-based tool.

Supporting non-
programmers

25%

Natural Language &
Terminology

12%

Asset Reuse
4%Playtesting and

Debugging
13%

Features
4%

Documentation
42%

In what ways could the tool be improved to be
more approachable or easier to understand?

Bug and Error Reporting
Did you encounter any bugs or unexpected behaviour while working with the tool? If so, what

happened, and how was it caused?

Elements of each response, including responses with no comments, were categorised inductively

into a set of categories, shown in Figure 12.

- None covers responses that fall under no other categories and did not encounter

unexpected behaviour, as perceived by the respondent.

- In-Game UI covers issues with the framework’s UI implementation within the gameplay.

- Grammatical covers issues with user input into the natural language.

- Empty Lines covers a specific bug in which empty lines and comments would prevent

compilation.

- Plugin UI covers issues with the framework’s UI implementation within the Unity Engine.

- Gameplay covers issues with the framework’s gameplay implementation within the Unity

Engine.

Figure 12 - A chart showing the proportion of responses containing common bugs and unexpected behaviour.

Overall, 4 respondents did not experience any issues that weren’t expected by that respondent,

making up 21% of content within responses overall.

7 respondents, or around 37% of response contents, mentioned the ‘empty lines’ bug, an out-of-

range exception within the framework that was not caught during the development period that

occurred during compilation of narrative script files for any empty or whitespace lines, including

comments. Most respondents encountered this issue within one of the demo scenes, but did not

report encountering it in their own scenes.

None, 21%

In-Game UI, 10%

User Error, 16%

Empty Lines, 37%

Plugin UI, 11%

Gameplay, 5%

What bugs or unexpected behaviour was
encountered?

Another 16% mentioned having issues due to user error, missing out punctuation at times and

encountering issues as a result. Of the 3 respondents with this issue, does not specify a grammatical

issue, but mentions that errors disappeared once they figured out how things worked.

11% of contents, or 2 respondents, mentioned issues with the plugin UI, both encountering different

issues. One had issues with making objects interactable using a right-click menu, while the other had

issues assigning an action script using the Unity selector.

Less pressingly, 2 respondents mentioned issues with the UI within gameplay, suggesting

improvements for features including the barks and emotions, and 1 other respondent mentioned

falling off the stage often, which has been attributed to Gameplay.

Discussion and Analysis
The results from the SUS questions can be combined into a set of overall usability scores for the

system. This requires use of the following equation, as composed by Lewis in his review of the

system’s use (Lewis, 2018) between 1996 and 2018.

𝑆𝑈𝑆 = 2.5 (20 + ∑(𝑆𝑈𝑆01, 𝑆𝑈𝑆03, 𝑆𝑈𝑆05, 𝑆𝑈𝑆07, 𝑆𝑈𝑆09)

− ∑(𝑆𝑈𝑆02, 𝑆𝑈𝑆04, 𝑆𝑈𝑆06, 𝑆𝑈𝑆08, 𝑆𝑈𝑆10))

Using the score formula, each respondent’s answers were calculated into a single System Usability

Scale score between 0 and 100, as shown in Figure 13.

Figure 13 – The spread of SUS scores calculated from the responses of each respondent.

Scores ranged from between 55 to 97.5, with an average score of 79.67. According to Lewis, the

average overall score for the SUS is 68, while above average ranks around 80. As such, the data

suggests that most participants felt that the system served well in terms of usability for their

purposes.

The participant who gave the system an overall ranking of 55 ranked the SUS questions at either 2,

disagreeing with multiple statements, or 3, having no opinion either way, ranking themselves as

having a lot of experience with programming and game engines. Their answers to the general

feedback questions suggest that they struggled with learning how to get started in a scene,

mentioning that “it was a little difficult to understand with what needed putting in the text file”, and

suggesting that the documentation could have been improved by being more specific on how to set

up a text file for dialogue.

On the other hand, the participant who gave a ranking of 97.5 had more engine experience, but less

programming experience, primarily responding that they strongly agreed or disagreed with all

statements, except for agreeing that they would use the system frequently and disagreeing that they

needed to learn a lot. They suggested that the tool could be improved with more features such as

0

10

20

30

40

50

60

70

80

90

100

System Usability Scale Scores

branching dialogue, mentioning that the tool was “immediately clear and simple to understand,

given basic unity experience”, implying that the tool still required a level of technical experience.

Their only suggestion for approachability was to add a tutorial within Unity on project startup.

While the extents of the data were both ranked by somewhat experienced participants, the study

does appear to have gotten data from a small range of individuals with differing amounts of

experience with coding, with an average experience of 3.20 and at least two participants per

experience ranking. However, there were few participants without any experience within a game

engine, with two respondents having no answer for question 2, and one respondent with only

experience in Scratch. Most respondents had some form of experience using Unreal Engine, Scratch,

or Unity, which could skew the data somewhat regardless of development discipline.

Participant 6 reported no engine experience, and programming experience at 2, ranking the overall

system at 92.5, far above average. They mention finding the functionality of the tool and explanation

given in the testing manual to be “clear and concise, and more approachable for it”, suggesting that

the testing manual was “invaluable”, and “made working in an engine [they] have no experience

with much less intimidating”. Although they experienced a bug with a file selector used by the

plugin, they otherwise had no suggestions for improvement.

Participant 11, with no programming experience with anything other than Scratch, gave the system a

ranking of 85, also above average, and did not rank any of the SUS questions at a 3, agreeing or

disagreeing with each statement to some degree with no notable outliers. They mention that

everything was “laid out in a clear and easy to navigate system”, and their only suggestion for

improvement regarded the addition of a user guide on startup.

On the other hand, participant 14, while having no experience within game engines, does have

professional programming experience, and ranked the system at 62.5. Strongly disagreeing that they

would like to use the system frequently, they have few other outlier rankings, with suggestions for

improvement surrounding framework features, choices, and quests, which would need

implementation in the framework and improved variable support for the system. They state that

their “favourite approachability features revolve around anything that keeps the user in the unity

application more”, which lines up with their suggestions for improving the tool, which includes a

more in-depth tutorial scene.

Notably, this participant suggests the use of a system that does not rely on natural language, as they

found it “more confusing during the writing scenes process”, providing an example describing a

block-based system like the system described by Birke (Birke, 2015) or the block-based

implementation of the Scratch language (Burd et al., 2004). While another participant shared the

sentiment of keeping work within Unity, suggesting a text editor for the custom language within the

engine, this participant’s answer suggests the need to test other variants of narrative tools in future

research for comparison with these results, as well as the possibility that different writers are likely

to understand different types of tools better than others.

Overall, when comparing the SUS scores against each participant’s programming experience as in

Figure 14, there is near zero correlation between the two values, with a slight negative trend. While

this may be due to both values being particularly subjective to an extent, or due to the small sample

size, this suggests that programming experience had little impact on the resulting usability of the

system.

Figure 14 - SUS Scores as ranked against the programming experience of each participant.

Similarly, when comparing SUS scores to the number of engines a participant has used as in Figure

15, there is near zero correlation between these two values, with a slight positive trend. This could

provide further evidence to show that the development experience of participants had little impact

on the usability of the narrative system.

Figure 15 - SUS Scores as ranked against the game engine experience of each participant.

While this could support Kauhanen’s proposed design principles (Kauhanen, 2009), as participants

without experience within game engines did just as well with the tool as others, it could be argued

that this data fails to prove that the success of the tool was related to the implementation of those

principles within the artefact.

0

20

40

60

80

100

120

0 1 2 3 4 5 6

O
ve

ra
ll

SU
S

Sc
o

re

Programming Experience

SUS Scores of Participants Ranked Against Programming
Experience

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7

O
ve

ra
ll

SU
S

Sc
o

re

Number of Engines with Experience Per Participant

SUS Scores of Participants Ranked Against Engine
Experience

Regarding how the system could be improved, a significant number of participants suggested

improvements to the framework and general features, many suggesting new emotions, or

expansions to the existing text or camera systems. While these aren’t the focus of this study,

providing writers with more tools to create scenes are likely to make them find the tool easier to

work with as more options are available to them, allowing them to create a more satisfactory scene

and more complicated narratives.

On the other hand, technical improvements also made up a significant portion of suggestions, with

participants 10, 12 and 14 all suggesting the addition of branching dialogue, a feature which was

planned but could not be implemented due to scope and time. Similarly, improving these could also

add to the usability of the final system simply by providing a larger narrative toolset, and would

allow for greater player agency as a result.

Participants generally felt that the documentation made the tool particularly approachable, with

many citing the demo scenes as a useful resource, such as participant 4, who suggested that “the

example scene was more than enough to figure out how to construct a scene”. Participant 6

suggested that the manual made working within Unity without experience “much less intimidating”.

However, most suggestions to improve approachability also covered documentation, with many

respondents suggesting that a guide on startup within Unity would reduce the amount of time spent

swapping between windows. Another common criticism was a request for better communication of

the commands available within the manual, and more detail regarding the setup of a new scene.

While documentation was not one of Kauhanen’s specific design principles, the emphasis on

documentation from the respondents seems significant. It could be argued that this falls under

‘supporting non-programmers’, as it provides them with a frame of reference without the need for a

technical person to be present. However, this could impact the results of the SUS, as more

documentation may require users to learn more before they can get going with the system. It may

be worth compromising here, as better startup information would make the tool more approachable

as a result and may instead improve scores for this question.

Of Kauhanen’s principles, ‘supporting non-programmers’ was the most common theme regarding

usability. 3 participants mentioned that the use of text files made the system more approachable, as

did handling various features under the hood. However, supporting non-programmers also featured

heavily regarding improvements, with 3 participants suggesting that there could be more front-

facing tooling, plugins for text editors such as notepad++, or a separate, custom program for editing

scripts, with participant 15 claiming that people with little programming experience “are much

happier to use a program with a UI than a tool”.

There was also a lot of praise for the natural language element, with participant 2 mentioning that it

was “practically the same as just reading a script”, and participant 4 noting that the natural typing

allowed them to preplan beforehand and implement their idea directly. However, 2 people brought

up the rigidity regarding punctuation, new lines, and case sensitivity as something to improve

approachability, as this was prone to cause errors, and debugging information in the project was not

sufficient to explain where the problem might lie. Participant 14 mentions that the natural language

was more confusing during the writing process, despite reading nicer., and made it “harder […] to

jump into the middle of a file”, suggesting the block-based editor as a result. This supports a need to

re-evaluate the core design of the tool, regarding how sentences should be structured, the

differentiation of key words and identifiers for readability, and grammar flexibility. Alternatively,

better tooling could reduce the impact of these issues by providing a spell-check or autocomplete for

different sentences.

Some of Kauhanen’s design principles were neglected in the responses. Four positive responses

mention aspects of asset reuse inbuilt within Unity, referring to use of prefabs and the ease with

which users can create new interactable objects. Only one participant mentioned this negatively, in

terms of a desire to add more to a prefab, such as an additional camera, which ties into the limited

functionality of the framework itself. Playtesting and debugging also received little feedback, with 3

participants mentioning it positively, suggesting that the documentation or existing demo scenes

helped with debugging. However, there were also multiple mentions of ways in which debugging

could be improved within the tool, suggesting more user friendly and helpful error logging, as well as

support within text editors to prevent errors before they occur.

Overall, the research supported Kauhanen’s design principles, as participants found the

implemented elements of these principles to be useful for approachability while using the tool.

These have also highlighted some key avenues for improvement with future development which

could improve approachability for non-programmers, particularly better debugging and a nicer front-

end. However, it also shows that there is room for improvement where different approaches to a

narrative tool may benefit some users over others.

However, this research methodology has key room for improvement. As mentioned, the sample

included 15 subjects, which is not enough for statistical significance. In addition, due to the sampling

method and timescale, most participants were friends of the researcher, or friends of friends due to

the snowball sampling method, which could have introduced a significant amount of bias towards

the research. Future reproductions of this method should look to get a larger sample size of

unrelated participants to reduce the amount of bias within the results, as well as getting a larger

range of participants with differing backgrounds, especially more writers without game development

experience. There is also a gap in the research area, meaning there is little to compare the results to,

so further research into other possible tools or improvements to this style of tool would greatly

benefit the field.

Conclusion
At the start of this paper, various objectives were set out to reach the aim of proposing, developing,

and learning from a writer friendly narrative tool. Each objective must be discussed to determine if

this aim was achieved, and to determine how to move forward with this research.

What constitutes narrative in games continues to be the subject of debate amongst narratologists

and ludologists alike, due to conflicting views on whether narrative should be interacted with, as in

games. There has been research into the development of true interactive narratives, from cybertext

and text adventures as discussed by Aarseth (Malloy and Aarseth, 1998), to interactive dramas like

Façade (Mateas and Stern, 2003), which would allow players to interact with the world as they

would in real life and have an impact in the narrative based on their choices, as discussed in Juul’s

thesis (Juul, 1999) and in Hamlet on the Holodeck (Murray, 2017).

However, this is not as common within games at large, which make use of a mixture of emergent

and embedded narrative techniques, according to Rules of Play (Tekinbas and Zimmerman, 2003),

which communicate narrative through the game world and the ergodic sequence of events that the

player experiences within gameplay, alongside static methods of narrative delivery such as textual

artefacts, audio, and cutscenes which take techniques from traditional forms of narrative.

Within the industry, various companies, including Obsidian Entertainment (Patel and Szymczyk,

2019), Valve (Ruskin, 2012), and Naughty Dog (Gregory, 2014), report different toolsets for use with

narrative development that allows writers to directly interface with the narrative of different games.

While spreadsheets are commonly used in some form (Bateman, 2021), particularly for organisation

purposes (Armstrong and Ewing, 2017), toolsets can range from natural language or a code-like

structure, such as YarnSpinner (Manning and North, 2021) or Prompter (Nelson, 2014), to visual

tools such as block-based or node-based scripting, such as Scratch (Burd et al., 2004) or Twine

(Interactive Fiction Technology Foundation, no date).While cutscenes are the most used form of

narrative delivery within any one game (Ip, 2011), various dialogue engines still find use to allow a

degree of player agency within the story by dictating how players can communicate with NPCs and

how these affect the game itself (Bateman, 2021), most commonly event-based and choice-based

dialogue engines.

There appears to be a gap within the field regarding guidance towards the development of narrative

tools for writers that has been backed up with evidence, however the design patterns proposed by

Kauhanen (Kauhanen, 2009) are a useful resource for developing potential narrative tools. The

artefact used as the subject of this paper’s research used these design patterns to develop a plugin

and framework for the Unity Engine, using a natural language scripting approach.

From testing this artefact with a small sample of 15 participants, it was determined that the system

has a score on the System Usability Scale of 79.67 (Brooke, 1996), based on the answers to the

questionnaire. This is around above average for systems scored using the SUS (Lewis, 2018), at a

score of 80. However, due to the lack of statistical significance, and the possibility of biases due to

the sampling method and lack of controlled environment, it would be worth investigating this

further for more accurate data.

The narrative language system could be improved by developing a way to reduce the need for

technical support while improving the ease at which the system can be learned and used. From

qualitative feedback, this could require the development of an editor or text software plugin for the

narrative scripting language, which could be used to correct spelling issues and use formatting to

help writers identify different sections of the script, without changing the structure of the language.

Notably, the documentation was heavily focused on by subjects, as many within the sample

referenced the documentation as points of both approachability and improvement. This suggests

that proper documentation of the system and what is possible for writers to use improves the

overall user experience, and as such should not be neglected during the development of narrative

tools.

Additionally, many were happy with the natural language scripting, suggesting that use of text files

was “seamless and easy to understand” and that it was “practically the same as just reading a

script”. This also made the system easier to pick up, using the information provided within existing

scripts as a frame of reference. This also adds to the argument that pre-existing, detailed but simple

materials, examples and documentation are effective for onboarding writers for a narrative tool.

However, this came with its own issues, as some testers had issues with the strict spelling and

punctuation requirements for commands, with one noting that they struggled to jump into the

middle of a script since “the break points are less clear”. While this solution could theoretically be

translated, this does also suggest the possibility that this approach may be significantly less usable

for writers with less proficiency in English. Additional research determining the effectiveness of a

natural language approach in other languages could also be worth investigating going forward, as

this could reduce the impact of a language barrier to narrative game development for non-native

English speakers.

One participant’s feedback suggests that alternative tooling may work better for some writers

compared to others. They proposed a block-based system within the Unity editor, which suggests

that research into other tools would be beneficial to the field and could be worth comparing to

determine which is best. However, it could also suggest that which narrative tool is the most usable

for writers is subjective. Therefore, it could be more beneficial for research purposes to determine

which features of these tools are usable and why, and how to apply these principles to other tools to

get the best experience possible. It could also point towards a need to have multiple methods to

visualise narrative during development.

Overall, the developed system received a lot of positive feedback from a sample with a range of

technical backgrounds, with strong feedback and usability scores from writers without experience

within a game engine. While the tool and the framework are not currently complex enough for use

within a development environment, it is worth developing further to include more of the requested

features and make changes to some of the presentation to align more with Kauhanen’s design

principles. It would also be worth testing in a development environment at this stage to determine if

the tool is viable for narrative development at a greater scale than was asked of testers for research.

Responses to the research indicate that concise, accessible documentation and examples are key to

improving approachability for a tool for writers without experience in game development, which

also reduces dependency on other developers. In addition, the natural language element was

generally considered easy to use and understand, though could be improved with better debugging

tools or guards against user mistakes such as spell-checking. However, additional research is

necessary to determine how a natural language approach compares in usability to other narrative

tooling for use in game development.

Recommendations
Future research in this area should attempt to reduce or remove biases in the data, particularly

those caused by relation to the researcher, by testing with a larger range of participants with a wider

variance in backgrounds. A study which achieves statistical significance would fill a large gap within

this area of research and may provide more accurate information regarding the usability of narrative

scripting tools by non-programmers and writers.

The methodology could be improved by introducing more methods through which to control

external variables, such as the testing conditions, which were not consistent due to participants

being sourced in a remote manner and using their own hardware to run both Unity and the artefact.

Limiting access to unrelated materials during the testing period and removing the step to install

Unity and the package itself could reduce the amount of unnecessary feedback regarding engine

installation.

In addition, the data gathered over the course of this study would be best compared against similar

studies with alternative implementations of narrative tools, as well as existing tooling and systems.

Doing so would allow these studies and tools to be compared against each other, allowing future

developments within this field to be compared against a base scale using existing data. It could be

beneficial for a project with a larger scope to build and test multiple different types of narrative

tools using different narrative engines and commercial editors to refine this data with a range of

consistent options.

Regarding the artefact developed for this research, much of the feedback regarded bug reports and

support for additional functionality, including the addition of branching paths and variables. It would

be beneficial to develop this artefact further to include some of these requests, such that more

complex stories can be created without the need to interface directly with the code of a given

engine. In addition, fixing internal bugs and reducing the severity of different user-side issues, such

as being more lenient with spelling and grammar, would be beneficial to usability overall as writers

can feel more empowered while using the tool, and this would reduce confusion when something

goes wrong. Additional debugging information which is more useful for non-technical writers would

also help in this regard.

While additional feature support may not add to the usability of the tool on its own, including more

detail within the documentation in a concise and writer-friendly manner and improving the UI of the

tool further to be more approachable could also improve a writer’s experience with the tool, and

therefore improve the usability of this approach. In addition, it is possible that integration of the

artefact into the Unity engine affected the tool’s usability overall. It could be worth either creating a

custom engine or editor for writers or creating versions of the tool which are compatible with other

commercial engines, such as Unreal Engine. Doing so may determine if the engine itself has an

impact on the usability of narrative tools.

References
Aarseth, E. (2012) “A narrative theory of games,” in Foundations of Digital Games 2012, FDG 2012 -

Conference Program. Available at: https://doi.org/10.1145/2282338.2282365.

Armstrong, W. and Ewing, P. (2017) Do You Copy? Dialog System and Tools in “Firewatch.” Available

at: https://gdcvault.com/play/1024000/Do-You-Copy-Dialog-System (Accessed: November 2, 2024).

Bateman, C. (2021) Game Writing: Narrative Skills for Videogames. Second edition. New York:

Bloomsbury Academic.

Birke, A. (2015) Automate, Streamline, Win! Content Creation for Small Teams. Available at:

https://gdcvault.com/play/1022777/Automate-Streamline-Win-Content-Creation (Accessed:

November 3, 2024).

Braun, V. and Clarke, V. (2006) “Using thematic analysis in psychology,” Qualitative Research in

Psychology, 3(2). Available at: https://doi.org/10.1191/1478088706qp063oa.

Brooke, J. (1996) “SUS -A quick and dirty usability scale Usability and context,” Usability evaluation in

industry, 189(194).

Burd, L. et al. (2004) “Scratch: a sneak preview [education],” Proceedings of Second International

Conference on Creating, Connecting and Collaborating through Computing [Preprint].

Campbell, J. (2008) The hero with a thousand faces, 3rd ed., The hero with a thousand faces, 3rd ed.

Cheng, P. (2007) “Waiting for something to happen: Narratives, interactivity and agency and the

video game cut-scene,” in 3rd Digital Games Research Association International Conference:

“Situated Play”, DiGRA 2007.

Clarke, A. and Zioga, P. (2022) “Scriptwriting for Interactive Crime Films,” Interactive Film and Media

Journal, 2(1). Available at: https://doi.org/10.32920/ifmj.v2i1.1524.

Despain, W. (2020) Professional Techniques for Video Game Writing, Professional Techniques for

Video Game Writing. Available at: https://doi.org/10.1201/9780429196539.

Domsch, S. (2013) Storyplaying: Agency and narrative in video games, Storyplaying: Agency and

Narrative in Video Games. Available at: https://doi.org/10.1515/9783110272451.

Eladhari, M. (2002) Object oriented story construction in story driven computer games. Translated by

S. Olsson. Masters. Stockholm University.

Al Enezi, W. and Verbrugge, C. (2023) “Investigating the Influence of Behaviors and Dialogs on Player

Enjoyment in Stealth Games,” in Proceedings - AAAI Artificial Intelligence and Interactive Digital

Entertainment Conference, AIIDE. Available at: https://doi.org/10.1609/aiide.v19i1.27512.

Green, D. et al. (2018) “Novella: A Proposition for Game-Based Storytelling,” in Proceedings of the

7th International Workshop of Narrative and Hypertext hosted at ACM. Baltimore. Available at:

https://doi.org/10.475/123_4.

Gregory, J. (2014) A Context-Aware Character Dialog System. Available at:

https://gdcvault.com/play/1020386/A-Context-Aware-Character-Dialog (Accessed: November 2,

2024).

Humfrey, J. (2016) Ink: The Narrative Scripting Language Behind “80 Days” and “Sorcery!” Available

at: https://gdcvault.com/play/1023221/Ink-The-Narrative-Scripting-Language (Accessed: November

3, 2024).

Humfrey, J. (2017) Creating Interactive Film Scripts for 3D Adventures with Ink. Available at:

https://gdcvault.com/play/1023990/Creating-Interactive-Film-Scripts-for (Accessed: November 3,

2024).

Ince, S. (2009) Writing for Video Games. 1st edn. A & C BLACK.

Interactive Fiction Technology Foundation (no date) Twine / An open-source tool for telling

interactive, non-linear stories. Available at: https://twinery.org/ (Accessed: February 24, 2025).

Ip, B. (2011) “Narrative structures in computer and video games: Part 1: Context, definitions, and

initial findings,” Games and Culture, 6(2). Available at: https://doi.org/10.1177/1555412010364982.

Jenkins, H. (2003) “Game Design as Narrative Architecture,” Response, 44(3).

Jones, D. (2008) “Narrative reformulated: Storytelling in videogames,” CEA Critic, 70(3).

Juul, J. (1999) A Clash between game and narrative: A thesis on computer games and interactive

fiction, Institute of Nordic Language and Literature.

Juul, J. (2001) “Games telling stories,” Game Studies, 1(1). Available at:

https://www.gamestudies.org/0101/juul-gts/ (Accessed: February 24, 2025).

Kauhanen, M. (2009) Examining Support of Narrative Scripting for Serious Games. Carleton

University.

Kipnis, A. (2014) Dialog Systems in Double Fine Games. Available at:

https://gdcvault.com/play/1020864/Dialog-Systems-in-Double-Fine (Accessed: November 3, 2024).

LeBlanc, M. (2000) “Formal Design Tools: Emergent Complexity, Emergent Narrative,” in Game

Developers Conference.

Lewis, J.R. (2018) “The System Usability Scale: Past, Present, and Future,” International Journal of

Human-Computer Interaction, 34(7). Available at: https://doi.org/10.1080/10447318.2018.1455307.

Lindley, C.A. (2005) “Story and Narrative Structures in Computer Games,” in Developing Interactive

Narrative Content.

Mackay, D. (2017) The Fantasy Role-Playing Game: A New Performing Art. McFarland, Incorporated,

Publishers. Available at: https://books.google.co.uk/books?id=s8YRVbDknyUC.

Malloy, J. and Aarseth, E.J. (1998) “Cybertext, Perspectives on Ergodic Literature,” Leonardo Music

Journal, 8. Available at: https://doi.org/10.2307/1513408.

Manning, J. and North, R. (2021) Game Narrative Summit: Turn your Writers Into Programmers:

Greyboxing Narrative with Story Languages. Available at:

https://gdcvault.com/play/1027215/Game-Narrative-Summit-Turn-Your (Accessed: November 2,

2024).

Mateas, M. and Stern, A. (2003) Façade: An Experiment in Building a Fully-Realized Interactive

Drama. Available at: www.interactivestory.net.

Mclaughlin, M. and Katchabaw, M. (2006) “A Reusable Scripting Engine for Automating Cinematics

and Cut-Scenes in Video Games,” Game Studies [Preprint].

Murray, J.H. (2017) “Hamlet on the Holodeck, Updated Edition,” Free Press [Preprint].

Nelles, W. (2020) Frameworks: Narrative Levels and Embedded Narrative. reprint. Wipf and Stock

Publishers.

Nelson, G. (2014) Prompter: A Domain-Specific Language for Versu.

Patel, C. and Szymczyk, D. (2019) Technical Tools for Authoring Branching Dialogue. Available at:

https://gdcvault.com/play/1025962/Technical-Tools-for-Authoring-Branching (Accessed: November

2, 2024).

Rush, J., Dancyger, K. and Keyt, J. (2023) Alternative Scriptwriting, Alternative Scriptwriting. Available

at: https://doi.org/10.4324/9781003242307.

Ruskin, E. (2012) AI-driven Dynamic Dialog through Fuzzy Pattern Matching. Empower Your Writers!

Available at: https://gdcvault.com/play/1015528/AI-driven-Dynamic-Dialog-through (Accessed:

November 2, 2024).

Ryan, M.-L. (2006) Avatars of Story. University of Minnesota Press.

Ryan, M.-L. (2009) “From Narrative Games to Playable Stories: Toward a Poetics of Interactive

Narrative,” StoryWorlds: A Journal of Narrative Studies, 1(1). Available at:

https://doi.org/10.1353/stw.0.0003.

Simons, J. (2007) “Game Studies - Narrative, Games, and Theory,” Game Studies, 7(1).

Tekinbas, K.S. and Zimmerman, E. (2003) Rules of Play: Game Design Fundamentals (The MIT Press),

MIT PRESS.

Toh, W. (2023) “The Player Experience and Design Implications of Narrative Games,” International

Journal of Human-Computer Interaction, 39(13). Available at:

https://doi.org/10.1080/10447318.2022.2085404.

Tomsinski, P. (2016) Behind the Scenes of Cinematic Dialogues in “The Witcher 3: Wild Hunt.”

Available at: https://gdcvault.com/play/1023285/Behind-the-Scenes-of-Cinematic (Accessed:

November 3, 2024).

Vogler, C. (1985) “The Writer’s Journey,” Physica Status Solidi (a), 89(1).

Wei, H. (2010) “Embedded narrative in game design,” in Future Play 2010: Research, Play, Share -

International Academic Conference on the Future of Game Design and Technology. Available at:

https://doi.org/10.1145/1920778.1920818.

Weizenbaum, J. (1966) “Eliza.”

Zhang, W., McLaughlin, M. and Katchabaw, M. (2007) “Story scripting for automating cinematics and

cut-scenes in video games,” in Proceedings of the 2007 Conference on Future Play, Future Play ’07.

Available at: https://doi.org/10.1145/1328202.1328229.

Appendices

Appendix 1 – Methodology Materials

1.1 – Social Media Pitch (X Thread)
Are you interested in narrative games, or writing dialogue and/or cutscenes for games?

Would you like to volunteer to help out with my dissertation research?

If so, please reach out to me via Twitter or LinkedIn for more details on signing up!

 For more info...

I'm working on a human readable scripting language for Unity 6, looking for people with interest and

time to test the system and answer a form on usability between the 20th and 26th of January.

Game dev experience isn't needed, as long as you can access Unity 6 and a text editor.

Testing should take about an hour at most, followed by a short questionnaire, asking after your

background with programming (if any) and usability feedback for the system.

All data collected is covered by the GDPR - full info will be sent to anyone interested before sign-up.

1.2 – Manu-Scriptwriter Testing Manual
Thank you for volunteering to take part. This document should cover any setup necessary for testing,

as well as the available functionality.

Setup

If you have any issues during setup, or with using the Unity Engine itself, feel free to request help.

What do you need?

- A copy of Unity 6, version 6000.0.19f1 or later.

- A text editor, such as Notepad, TextEdit, Notepad++, or otherwise. Most computers come

with a text editor pre-installed.

- A copy of the project itself, which should have been provided alongside this manual.

Installing Unity 6

If you already have a copy of Unity 6 installed on your device, you can skip this heading.

An installation for version 6000.0.19f1 for Windows, MacOS, or Linux, can be found on the Unity

website. https://unity.com/releases/editor/whats-new/6000.0.19

To install, download the installer for your machine, run the executable file, and follow the setup

wizard. Wait for the install to finish before continuing.

Opening the Project

Download and unzip the provided copy of the Manu-Scriptwriter project.

On opening Unity 6, select Open Project.

https://unity.com/releases/editor/whats-new/6000.0.19

Then, navigate to the unzipped Manu-Scriptwriter folder. Click on the folder or open it, then click

select folder. Wait for Unity to load the project.

Optional: Updating the Project to a Later Version

If, on opening the project, you are met with the following window, it is safe to click continue, then

wait for it to load once more.

The project does not depend on version 6000.0.19f1, and the update process should not require any

other input. If you experience any issues, feel free to request help, or delete and re-download the

project and the correct version of the editor.

Testing Instructions and Hints

From here on, what you do with the project is up to you. You should not need to touch any of the

code itself, outside of anything within a text file.

Play around with the provided functionality using the Manu-Scriptwriter language or add new things

to scenes based on existing objects until you are satisfied that you’ve made a good scene.

Controls

To start a scene, enter Play mode by clicking the Play button in the top middle of the editor.

While in Play mode:

• Use WASD or the arrow keys to move the player character.

• Press Enter to interact with something.

• Press Enter to advance text during an interaction.

To stop the scene at any time, leave Play mode by clicking the stop button. You should do this

whenever you want to edit a script, or if you encounter an issue, such as falling off the world, or

encountering bugs.

Organisation

There are a few folders which you’ll either work in or take assets from, which can be viewed in the

project window.

Scenes Folder

Within this folder are two sample scenes with simple interactions, and one template with everything

but the interaction set up for use.

To open a scene, double click the icon for the desired scene. For a simple example, I recommend the

‘Welcome’ scene!

Feel free to edit an existing scene and scripts to your own liking, or create something entirely new

within ‘Template’. Whichever is easiest for you.

Design/ManuScriptwriter Folder

Within this folder are common, reusable objects for a scene/interaction, known as prefabs.

Importantly, this includes an NPC and an “Interactable Object” prefab, which has been setup with

everything necessary to work with the text scripts in advance.

To use a prefab, simply click and drag from the project window and into the scene or the hierarchy

windows. You can move that object within the world either using the transform tool or the

Transform section of the inspector window.

If you place an object in the scene that doesn’t use one of these prefabs, and then decide to make it

interactable later, you can right click that object in the hierarchy, then go to ManuScriptwriter ->

Make Selection Interactable. This should add everything necessary.

Resources Folder

Within this folder are any text files used within scenes in the project. All scripts you create should be

placed somewhere within this folder, regardless of how you organise them.

You should be able to open a text file in this folder by double clicking the file.

To create a new text file, right click within the project window, go to Create -> Text File.

Errors, Problems, and Debugging

Chances are, one of your custom scripts will break if they aren’t understood by the game. In the case

that an error occurs, check the Console window.

If the error message mentions “[ManuScriptwriter]”, you’ll want to follow the instructions to correct

something in one of your own text files. See if you can figure out how to fix the issue yourself!

If not, then you may have encountered a bug with my code that is not your fault. While this project

has been provided to you with the expectation that it will not break for the purposes of this

research, there is always the chance that something like this will occur.

In general, make note of the problem, but see if you can work around it.

Additional Guidance

If you have trouble with some of the core functionality within the Unity editor, unrelated to the

provided language, you may want to look towards the official Unity documentation or tutorials.

This tutorial serves as a good introduction to the Unity Editor, though not all the content covered

may be relevant or necessary.

https://learn.unity.com/tutorial/explore-the-unity-editor-1

Using Manu-Scriptwriter

Within Unity Editor

Some use of the Unity Editor is required for a scene to work, as a script will not run otherwise. This

logic is displayed in the inspector panel, usually to the right of the screen.

https://learn.unity.com/tutorial/explore-the-unity-editor-1

Objects and NPCs can be given a name using the “Descriptor” component in the inspector. This can

be changed by editing the “Object Name” property.

Multiple objects in one scene should not share the same name.

Each object and NPC holds its own script within the “Actions” component in the inspector. This can

be changed by editing the “Action Script” property.

Either click and drag the script from the resources folder in the project window to this property or

click the target button and search for the file in the search window.

Within Manu-Scriptwriter Scripts

Parts of any sentences that can be changed are highlighted in blue.

Events

When the Player speaks with Target

When the Player talks to Target

When the Player talks to the Target

When the Player interacts with the Target

The only currently available event within Manu-Scriptwriter. This indicates that dialogue should

occur after interaction with the specified target. “Target” must share a name with an object or NPC.

Dialogue

Speaker: Dialogue

The standard method of writing a line of dialogue. The Speaker does not need to share a name with

an object or an NPC.

Speaker barks: Dialogue

The Speaker barks: Dialogue

An alternative method of communicating dialogue. This is intended for short sentences. “Speaker”

must share a name with an object or an NPC. After a short period of time, the bark will disappear

automatically.

Target feels emotion.

The Target feels emotion.

A simple method of conveying little emotions using iconography. “Target” must share a name with

an object or an NPC. The available emotions are as follows:

“happy” or “sunny”

“love”

“mad”, “angry”, or “annoyed”

“nervous” or “awkward”

“sad” or “depressed”

“tired”

Camera

The camera freezes.

The camera will stop moving entirely. This continues after the end of an interaction.

The camera focuses on Target.

The camera focuses on the Target.

The camera will follow the specified target. “Target” must share a name with an object or an NPC.

This continues after the end of an interaction. Return focus to the player by specifying “The camera

focuses on the player.”

The camera shakes from side to side.

This causes the camera to shake erratically from left to right. This effect is removed at the end of an

interaction.

The camera stops shaking.

This stops the camera from shaking if it was previously shaking.

1.3 – Testing Questionnaire

Investigating Narrative Systems and Tools for Games - Testing Questionnaire

Once you have spent some time working within the provided project, please fill out this

questionnaire.

Please see the information sheet provided before your participation in the study for full details

regarding the study, and regarding the storage and use of your data, including the full data

protection statement as covered by the General Data Protection Regulation 2016 (GDPR).

Section 1 – Participant Background

Question 1. How much experience do you have with writing in a programming language on a scale of 1-5,

where 1 is no experience, and 5 is professional experience.

Question 2. Did you have any experience with any of the following game engines before taking part in this

study?

- Unreal Engine
- Unity
- Godot
- Game Maker
- RPG Maker
- Ren’Py
- Twine
- Scratch
- Other [Allow custom input]

Section 2 –System and Tool User Experience
For this section of the form, please rank your experience with the provided narrative scripting language based

on the following scales from 1-5.

Question 1. Rank your experience of the tool based on the following scales from 1-5:

a) I think that I would like to use this system frequently.
b) I found the system unnecessarily complex.
c) I thought the system was easy to use.
d) I think that I would need the support of a technical person to be able to use this system.
e) I found the various functions in this system were well integrated.
f) I thought there was too much inconsistency in this system.
g) I would imagine that most people would learn to use this system very quickly.
h) I found the system very cumbersome to use.
i) I felt very confident using the system.
j) I needed to learn a lot of things before I could get going with this system.

Section 3 – General Feedback

Question 1. How could the narrative tool be improved?

Question 2. In what ways was the tool approachable or easy to understand?

Question 3. In what ways could the tool be improved to be more approachable or easier to understand?

Question 4. Did you encounter any bugs or unexpected behaviour while working with the tool? If so, what

happened, and how was it caused?

Appendix 2 – Results

2.1 – Research Data

2.1.1 – Section 1, Prior Experience

Id

How much experience do you have with
writing in a programming language on a
scale of 1-5, where 1 is no experience,
and 5 is professional experience?

Did you have any experience with any of the following
game engines before taking part in this study?

1 4 Unreal Engine;Unity;Godot;RPG Maker;Scratch

2 5 Unreal Engine;Unity;Godot;Scratch;Proprietary Engines

3 3 Unreal Engine;Unity;Scratch

4 5 Unreal Engine;Unity;Godot;RPG Maker;Scratch

5 1 Unreal Engine

6 2

7 3 Unity;Ren'Py;Twine;Scratch;Roblox Studio

8 4 Unreal Engine;Unity;Scratch

9 2 Unreal Engine;Scratch

10 3 Unreal Engine;Unity;RPG Maker;Inkle

11 1 Scratch

12 4 Unity;Unreal Engine;Game Maker

13 2 Scratch;Unreal Engine

14 5

15 4 Unreal Engine;Unity;RPG Maker;Ren'Py;Twine;Scratch

Question 1

How much experience do you have with writing in a programming language on a scale of 1-5,

where 1 is no experience, and 5 is professional experience?

Question 2

Did you have any experience with any of the following game engines before taking part in this

study?

2.1.2 – Section 2, System Usability Scale

Id SUS01 SUS02 SUS03 SUS04 SUS05 SUS06 SUS07 SUS08 SUS09 SUS10 SUS Score

1 3 3 4 1 3 2 3 2 4 1 70

2 4 2 4 1 4 1 5 1 5 1 90

3 5 1 5 2 5 1 4 1 5 2 92.5

4 4 1 4 1 4 1 5 1 4 2 87.5

5 4 3 4 1 5 2 5 2 4 3 77.5

6 4 1 5 1 4 1 5 1 4 1 92.5

7 3 1 4 2 5 1 4 1 3 1 82.5

8 3 3 3 3 3 2 2 2 3 2 55

9 3 1 4 2 5 1 5 1 3 2 82.5

10 5 1 5 1 5 1 5 1 5 2 97.5

11 4 1 5 4 5 1 5 1 4 2 85

12 3 2 3 2 4 1 5 1 4 2 77.5

13 2 1 4 3 5 1 3 5 4 4 60

14 1 3 4 2 3 1 4 2 4 3 62.5

15 4 1 5 1 4 1 4 2 3 2 82.5

Question 3 – SUS01

I think that I would like to use this system frequently.

Question 4 – SUS02

I found the system unnecessarily complex.

Question 5 – SUS03

I thought the system was easy to use.

Question 6 – SUS04

I think that I would need the support of a technical person to be able to use this system.

Question 7 – SUS05

I found the various functions in this system were well integrated.

Question 8 – SUS06

I thought there was too much inconsistency in this system.

Question 9 – SUS07

I would imagine that most people would learn to use this system very quickly.

Question 10 – SUS08

I found the system very cumbersome to use.

Question 11 – SUS09

I felt very confident using the system.

Question 12 – SUS10

I needed to learn a lot of things before I could get going with this system.

2.1.3 – Section 3, General Feedback

Id
How could the narrative
tool be improved?

In what ways was the tool
approachable or easy to
understand?

In what ways could the tool
be improved to be more
approachable or easier to
understand?

Did you encounter any bugs
or unexpected behaviour
while working with the
tool? If so, what happened,
and how was it caused?

1

If the text files could be
changed in Unity itself, the
workflow would be much
smoother. More ways to
trigger dialog sequences
and being able to associate
character portraits may also
be good features to
increase the number of use

The natural language used
to write dialog is very
approachable. The barks are
a particularly useful feature
for approachability. They
enhance dialog greatly
while being very simple to
use!

Having to use a separate
editor for the text files adds
an extra layer of complexity,
so being able to edit directly
in Unity would make the
tool more approachable as
a user.

I encountered an issue
where the name box of the
speaking character would
be in the wrong position
and as a result end up
behind the center of the
main dialog box. The name
box would update correctly,

cases for the tool.
While more of a fringe
option, being able to pause
between dialog lines within
the same conversation
would be nice as well (e.g.
two characters have an
awkward moment in a
conversation, leading to a
pause)

but not be visible during
play.

2

I think the tool is great and
very useful, the
improvement that I can
think of is just expanding
upon it to have more
features, but creating
custom features is easy
enough, so not much else.

It is easy due to the fact that
its practically the same as
just reading a script.
In terms of use it is easy as
most things are delt with
automatically, just need to
attach a the action script.

Either slightly less rigidity
with punctuation/new lines,
or some debug error
checking to help find the
issue/warn users. If an
action script accidentally
was edited and ended with
an empty line, could result
in game crashes.

Small issues with
punctuation or new lines.
Example having a text
action script with the last
line being empty reports an
issue with index being out
of bounds.

3

Perhaps attaching
instructions in the form of a
video tutorial that
demonstrates using it so
people who are less
confident with the engine
can mimic the creator's
actions first.

The use of the txt files was
very seamless and easy to
understand. The files within
the project are organized
and it is easy to find what
you need. Since an NPC
prefab is already created for
you, it is easy to add new
characters to the scene.
Having a welcome scene
also helps introduce the
user to the tool more
gently.

I believe having a
demonstration/tutorial
video creating a scene
would be more than
sufficient in making the tool
more approachable as the
player can practice using
the tool by copying the
creator's tutorial. If there is
any confusion they are able
to rewatch the video as
many times as necessary.
This would remove needing
an in-person demonstration
to each writer and save a
significant amount of time.

Adding a space at the end of
the txt file blocks the user
from witnessing the
interaction between an
NPC.

4

From a technical
perspective, allowing users
to input their own schema
to parse key phrases. That
would be fantastic since
then this tool can be
customised for specific
needs. An engineer would
need to provide support to
allow this though.

It was easy as I was handling
only a couple of text files. I
could naturally type out the
scene the scene I wanted so
I could preplan beforehand
what the scene should look
like and then directly
implement it. The example
scene was more than
enough to figure out how to
construct a scene

Maybe providing these
commands in a debug log
would be nice or some way
to output these
commands/schema? That
way I don’t need to look
back and forth at a manual I
can just look at Unity
directly? N/A

5

Restructuring the guide to
put a emphasis on
case/punctuation sensitive
to avoid common user bugs
if this little caveat cannot be

Most functions handled
under the hood by the
plugin such as emote
visibility and camera lerps.

Restructuring the guide to
put a emphasis on
case/punctuation sensitive
to avoid common user bugs
if this little caveat cannot be

Punctuation sensitive with
missing full stops breaking
the script

changed.

Object names could be
required to be in ALL CAPS
so that there is a better
differentiation between
dialogue lines and variable
changes

Emotions can be shown for
a certain amount of seconds
set by the designer before
being turned off, or have
them be controlled by the
designer to disappear upon
the next line of dialogue, as
emotions can overlap and
overstay if the player skips
through lines of dialogue on
repeat play through.

More emotions can be
added overtime such as
question marks for more
intricate cutscenes

Maybe some syntax in the
game world when the script
wont start due to a
grammatical issue. Though
this is a minor change out of
the list.

Within the NPC prefabs,
being able to spawn and
place a camera in that
prefab and then giving it a
object name such as camera
2 could maybe allow
designers to allow for more
cinematic camera angles
when using the line the
camera focuses on Kacy
(Camera 2)

changed.

Object names could be
required to be in ALL CAPS
so that there is a better
differentiation between
dialogue lines and variable
changes

Emotions can be shown for
a certain amount of seconds
set by the designer before
being turned off, or have
them be controlled by the
designer to disappear upon
the next line of dialogue, as
emotions can overlap and
overstay if the player skips
through lines of dialogue on
repeat play through.

More emotions can be
added overtime such as
question marks for more
intricate cutscenes

Maybe some syntax in the
game world when the script
wont start due to a
grammatical issue. Though
this is a minor change out of
the list.

Within the NPC prefabs,
being able to spawn and
place a camera in that
prefab and then giving it a
object name such as camera
2 could maybe allow
designers to allow for more
cinematic camera angles
when using the line the
camera focuses on Kacy
(Camera 2)

6

I can't think of anything
that'd make it easier to use
than it is. Its functionality
and the explanation are
clear and concise, and more
approachable for it,

The Manu-Scriptscriptwriter
Testing Manual was
absolutely invaluable. The
fact that most of the work
with the tool was confined
to editing .txt files made it Little comes to mind.

When searching for a
present Action Script
though the target button
beside the "Action Script"
property, the search
function could not locate

especially with the aid of
the Testing Manual.

particularly approachable,
and knowing where exactly
I'd be working within Unity
(the Design, Resources, and
Scenes folders within the
Assets folder) and what
exactly I'd be doing in them
made working in an engine I
have no experience with
much less intimidating.

the file. When attempted
via dragging and dropping
the Action Script file into
the property instead, this
worked fine.

7

It feels limited in that you
can only interact with
objects/NPCs and feels like
a Visual Novel where you
are stuck in one scene. If
there was a way to switch
scene with the tool that
would make it (in my
opinion) better. For
example: interacting with a
door and changing scene to
a different room.

This isn't an issue for me
since I have knowledge of
Unity and C# but the plugin
feels like a way to
circumvent scripting in C#

It was easy to understand in
terms of it having the
Manual with it which
explained how to use it.
Once I had read that I found
it easy to use.
Having the templates
provided also helped with
understanding how it
worked as I could reference
what I was doing to
something already made to
check if I was using it right
(e.g. I forgot to put "When
the Player talks to Target"
with the first NPC I made,
looked at the script for
Daniel and realised my
mistake)

N/A - I can't think of a way
to make it more
approachable/easier to
understand. I think it
explains itself well in the
manual, even just to
downloading the Game
Engine (Unity). This could be
because of my experience
with Twine and RenPy
though. No

8

Making my own text boxes
was fun, but it was a little
difficult to understand with
what needed putting in the
text file E.G it took me a
little bit to figure out I
needed to add "When X
interacts with Y" at the
start, thanks to my prior
knowledge i was able to
figure that out though. So
more documentation on
how things work maybe

Once I understood
everything It was pretty
simple to use, It was just a
case of learning how it
worked that proved slightly
hard

Mostly documentation,
Explaining what is needed
when creating a new txt file
for the dialogue and on
setting up new scenes. I
tried setting up a new scene
and ran into some difficulty
setting everything up,
eventually I did get
everything working but this
was again thanks to my
prior knowledge with Unity
and Game Engines

I did encounter some errors
but they dissapeared once I
understood what i was
doing and how things
worked

9

Can't think of any
improvements on the
current code other than to
just develop it further / add
more features. I barely
know anything about coding
so take everything I say with
a heaping spoonful of salt.

Manual given was very easy
to read and any issues were
completely user error (not
knowing you can't have an
empty line of code, not
knowing to not use
quotation marks, etc). After
a bit of trial and error I
completely got the hang of

Can't think of any, the only
way it could be more
approachable is through
being more familiar with the
software myself, which is no
fault of yours.

When trying to interact with
NPCs in the "Welcome"
room, no text would appear
and the error message
"Index was outside the
bounds of the array" would
be at the bottom of the
screen. This however was

It would be nice for the
system to be able to change
text colour, speed, position
and even add noises if those
are possible? Like how you
can move the camera with
it. My main thought is that if
these things aren't in the
system, it may be difficult to
connect it to said system
later after coding them
separately? If this doesn't
make sense or wouldn't be
an issue then please
disregard it.

it and was able to utilise
every provided feature.

not at all a problem with
any other rooms or entities.

10

Obviously it could be
improved by expanding the
range of features and
abilities, but even in this
simple state I think it would
be extremely useful to
game designers looking to
include a simple to medium
complexity narrative line to
their games without any
experience. With more
experienced coders, I think
the tool could be
implemented and made to
produce complex narrative
formats quite easily even
with the current feature
base. I think the next most
useful step would be to add
simple choice based
dialogue as a base feature
of the code (ie, question
and answer)
(As an Unreal Engine user it
would be extremely
improved by becoming an
unreal plugin, I want it)

The tool was immediately
clear and simple to
understand, given basic
unity experience. The
documentation was clear
and precise and I was able
to install it, get it running
and start editing scenes
within less than 20 minutes
(including unity install time).
I think even newcomers to
unity and code would be
able to approach a simple
narrative very easily with
this tool.

I genuinely can't think of
anything - even before I
opened the documentation,
it was immediately clear
how it worked and applied
itself to the provided test
scenes. Short of it having a
step-by-step tutorial popup
on install, I don't think it
could be any clearer.

Visual studio did briefly
refuse to open the script -
but then I closed and re-
opened it and it suddenly
worked, so I don't think
that's a problem with the
tool so much as my
computer. Other than that I
didn't encounter any errors!

11

I feel that the narrative tool
worked perfectly for the
purpose I personally set out
to use it for, so I am unsure
how to answer this one.

I have next to no knowledge
of coding or using an engine
that would allow me to
create a functioning scene,
but through picking through
the available items and
using the tools laid out in a
clear and easy to navigate
system, I was able to

A user guide could
potentially be useful, that
appears on initial startup to
explain the uses of each
tool- although this would
only be necessary if the user
had never used anything
related to coding before. No.

produce a functional end
product with no prior
knowledge.

12

The base behaviours
provided are good, there's
some areas I think there is
for improvement or that
might have a lot of room for
user error I'll point out.
- this is likely beyond the
scope of the project but it
would be good if there was
an easy way to add new
behaviours, e.g. theres a
base class thats inherited +
maybe an interface that
allows you to assign the text
and an action to happen so
that people can quickly add
their own behaviours if they
have programming
knowledge.

- setting new emotions - I
know there is a menu for
creating new emoticon
scriptable objects, but when
i create one it doesnt
automatically get added
somwhere which allows me
to use it immeditely, and im
not entirely sure where that
can be done. If all of the
emotions, aliases and
images were stored in one
scriptable object as a struct
it might be easier to use
possibly, then again that
could make it more
complicated to use when
theres a lot of emotions.
Either way, when i make a
new emoticon i dont know
how to link it into the
system which might be
complicated from a user
perspective.

- This is beyond your scope,
but having an ability to
branch dialogue, define

I found it easy to
understand how to change
dialogue, set new things up,
etc. As a system it's very
friendly for designers to get
into immediately and start
changing things.

While you said i shouldnt go
into the code for me at least
knowing how some things
work helps me to work with
them, i think having an API
reference or explainations
of what each component
does could be helpful for
users (or commenting the
code or doing summaries
for functions users might
touch), along with step by
step explaintions of how to
set stuff up.

While the PDF is good i
think theres a way to
include docs like that within
unity which could make it
more user friendly.

Not any that you don't
know about

options for inputs and
assigning variables from
inside the text itself
(thinking yarn spinner with
games like disco elysium
where you can pick dialogue
options and different
dialogue options can call
functions which's return
effect the next line of text,
add EXP, etc.) would make it
so designers have a lot of
power without needing to
go into code.

13

Add a Unity Tutorial stage/
PDF Detailing the locations
and specifics of the tool.
Perhaps finding a way to
make the code text files
more visually clear for
future editing or longer
projects.

Loved that everything was
clearly labeled and
sectioned within the
inspector panel. It made
renaming or adding in
different .TXT files very
intuitive. Along with making
a new object interactable
very simple. Same as previously stated.

Had errors trying to load the
Manuscript into Unity 6
despite following the
tutorial the PDF provided
had. I found that some of
the objects really did not
want to become
interactable until I tried it a
few times. Along with i kept
running off the stage due to
some floaty controls.

14

Some options for
interactivity beyond camera
pans would be a major
improvement, for example
adding a teleport to chosen
location option would be
great to let a player move
past a doorway. Similarly,
adding the option to make
choices in the dialogue and
having the NPC say the
corresponding response
would help make scenes
feel more like a chose your
own adventure book and
less like a stage play. Also,
adding “quests” would add
a lot, e.g. a character
requests you to go collect a
book, you go click on the
book, when you return the
character has new dialogue.

My favourite
approachability features
revolve around anything
that keeps the user in the
unity application more. The
ability to right click and
select “make object
interactable” is a great
example, and really
alleviates a new users issues
with the Unity UI (I tried to
make a text box without it,
and struggled to get the
scaling correct), whilst also
being logically where you’d
expect it (I want to do a
thing with this object - >
right click the object - >
select the do thing option -
> it now does the thing!).
Additionally, the integrated
camera options really help
avoid a new player needing
to fuss with the Unity UI,
and help scenes feel much
more alive.

As someone used to coding,
the lack of highlighting for
text in the code editor
makes it harder to
distinguish what is the
target, and what is the
action. Maybe a simple
VSCode/notepad++ plugin
could help?
However, given the aim of
simplicity, having to leave
the unity interface at all can
be intimidating.
1) I think a tutorial in Unity
would help, especially for
people unfamiliar with
Unity’s UI. Something along
the lines of
a. NPC: Hey there, I’m
currently talking from script
1, swap to script 2 to hear a
joke! To swap, click on me
in the hierarchy tab (with
the game preview stopped),
then click on the script box
in the bottom right. There

Barks seem to scale how
long they appear with
sentence length. This is
good for readability, but
makes convos desync, and
also the initial message
appears at the same time
rather than separate like a
normal convo.
The interactable icon for
NPC’s appeared on top of
the Barks, whereas in my
opinion they could be
hidden whilst the dialogue
is progressing (maybe add
an option so that pressing
enter hurries the barks
along, with an enter
indicator on the bark
implying that).
Lastly I tried to run the
welcome scene, but had the
following error on load, and
no dialogue would happen.

should be an option called
NPCScript2. Select that,
then preview the
application again!
2) Maybe try and avoid the
need for text files all
together. Whilst the natural
language might read nicer, I
personally find it more
confusing during the writing
scenes process. Also, it
makes it harder for me to
jump into the middle of a
file I’ve written, as the
break points are less clear. I
don’t have any experience
with Unity, but I played
around with it for a little bit
and managed to create a
custom script (using C#)
that had the following UI.
The Dialogue Box and Text
was just how I linked to the
text box, so ignore that, but
the dialogue lines array is
the list of lines that an NPC
responds with in sequence.
Maybe a solution similar,
where you add “steps” with
a drop down for what event
type it is, what is doing it,
and a field to the right for
the details would be.
(Example mockup, with
each section being a
dropdown, except dialogue
being free text)

15

I think the ability to use the
tool to play animations or
for it to remember what
interactions you've used as
variables for things like
puzzles and progression
would be a really cool next
step!

Your manual was well
written and to the point!
Any errors I encountered
were my own fault for
skipping ahead and refusing
to read.

I feel like the best way to go
about this would be having
a proper front end program
for the system, though that
would be a lot of work lol. I
find most people who don't
have a lot of programming
experience are much
happier to use a program
with a ui than a tool,
yknow? Perfectly accessible
and approachable for
someone like me. Maybe
include details like being

Not while working with it,
but for some reason the
'welcome' test room just did
NOT work. Like I was
spamming enter and every
key I could think of and
none of them were letting
me talk to Matt or the cat. I
looked at it and I could not
for the life of me figure out
why.

able to choose text colour in
the main manual also.

Question 13

How could the narrative tool be improved?

Id How could the narrative tool be improved? Plugin
Features
Requests Documentation Technical

Feature
Changes Debugging

1

If the text files could be changed in Unity
itself, the workflow would be much
smoother. More ways to trigger dialog
sequences and being able to associate
character portraits may also be good features
to increase the number of use cases for the
tool.
While more of a fringe option, being able to
pause between dialog lines within the same
conversation would be nice as well (e.g. two
characters have an awkward moment in a
conversation, leading to a pause) 1 1

2

I think the tool is great and very useful, the
improvement that I can think of is just
expanding upon it to have more features, but
creating custom features is easy enough, so
not much else. 1

3

Perhaps attaching instructions in the form of
a video tutorial that demonstrates using it so
people who are less confident with the
engine can mimic the creator's actions first. 1

4

From a technical perspective, allowing users
to input their own schema to parse key
phrases. That would be fantastic since then
this tool can be customised for specific
needs. An engineer would need to provide
support to allow this though. 1

5

Restructuring the guide to put a emphasis on
case/punctuation sensitive to avoid common
user bugs if this little caveat cannot be
changed.

Object names could be required to be in ALL
CAPS so that there is a better differentiation
between dialogue lines and variable changes

Emotions can be shown for a certain amount
of seconds set by the designer before being
turned off, or have them be controlled by the
designer to disappear upon the next line of
dialogue, as emotions can overlap and
overstay if the player skips through lines of
dialogue on repeat play through. 1 1 1 1 1

More emotions can be added overtime such
as question marks for more intricate
cutscenes

Maybe some syntax in the game world when
the script wont start due to a grammatical
issue. Though this is a minor change out of
the list.

Within the NPC prefabs, being able to spawn
and place a camera in that prefab and then
giving it a object name such as camera 2
could maybe allow designers to allow for
more cinematic camera angles when using
the line the camera focuses on Kacy (Camera
2)

6

I can't think of anything that'd make it easier
to use than it is. Its functionality and the
explanation are clear and concise, and more
approachable for it, especially with the aid of
the Testing Manual.

7

It feels limited in that you can only interact
with objects/NPCs and feels like a Visual
Novel where you are stuck in one scene. If
there was a way to switch scene with the tool
that would make it (in my opinion) better.
For example: interacting with a door and
changing scene to a different room.

This isn't an issue for me since I have
knowledge of Unity and C# but the plugin
feels like a way to circumvent scripting in C# 1

8

Making my own text boxes was fun, but it
was a little difficult to understand with what
needed putting in the text file E.G it took me
a little bit to figure out I needed to add
"When X interacts with Y" at the start, thanks
to my prior knowledge i was able to figure
that out though. So more documentation on
how things work maybe 1

9

Can't think of any improvements on the
current code other than to just develop it
further / add more features. I barely know
anything about coding so take everything I
say with a heaping spoonful of salt.

It would be nice for the system to be able to
change text colour, speed, position and even
add noises if those are possible? Like how 1

you can move the camera with it. My main
thought is that if these things aren't in the
system, it may be difficult to connect it to
said system later after coding them
separately? If this doesn't make sense or
wouldn't be an issue then please disregard it.

10

Obviously it could be improved by expanding
the range of features and abilities, but even
in this simple state I think it would be
extremely useful to game designers looking
to include a simple to medium complexity
narrative line to their games without any
experience. With more experienced coders, I
think the tool could be implemented and
made to produce complex narrative formats
quite easily even with the current feature
base. I think the next most useful step would
be to add simple choice based dialogue as a
base feature of the code (ie, question and
answer)
(As an Unreal Engine user it would be
extremely improved by becoming an unreal
plugin, I want it) 1 1

11

I feel that the narrative tool worked perfectly
for the purpose I personally set out to use it
for, so I am unsure how to answer this one.

12

The base behaviours provided are good,
there's some areas I think there is for
improvement or that might have a lot of
room for user error I'll point out.
- this is likely beyond the scope of the project
but it would be good if there was an easy
way to add new behaviours, e.g. theres a
base class thats inherited + maybe an
interface that allows you to assign the text
and an action to happen so that people can
quickly add their own behaviours if they have
programming knowledge.

- setting new emotions - I know there is a
menu for creating new emoticon scriptable
objects, but when i create one it doesnt
automatically get added somwhere which
allows me to use it immeditely, and im not
entirely sure where that can be done. If all of
the emotions, aliases and images were
stored in one scriptable object as a struct it
might be easier to use possibly, then again
that could make it more complicated to use
when theres a lot of emotions. Either way,
when i make a new emoticon i dont know 1 1

how to link it into the system which might be
complicated from a user perspective.

- This is beyond your scope, but having an
ability to branch dialogue, define options for
inputs and assigning variables from inside the
text itself (thinking yarn spinner with games
like disco elysium where you can pick
dialogue options and different dialogue
options can call functions which's return
effect the next line of text, add EXP, etc.)
would make it so designers have a lot of
power without needing to go into code.

13

Add a Unity Tutorial stage/ PDF Detailing the
locations and specifics of the tool. Perhaps
finding a way to make the code text files
more visually clear for future editing or
longer projects. 1 1

14

Some options for interactivity beyond
camera pans would be a major improvement,
for example adding a teleport to chosen
location option would be great to let a player
move past a doorway. Similarly, adding the
option to make choices in the dialogue and
having the NPC say the corresponding
response would help make scenes feel more
like a chose your own adventure book and
less like a stage play. Also, adding “quests”
would add a lot, e.g. a character requests
you to go collect a book, you go click on the
book, when you return the character has
new dialogue. 1 1

15

I think the ability to use the tool to play
animations or for it to remember what
interactions you've used as variables for
things like puzzles and progression would be
a really cool next step! 1 1

 4 7 4 6 1 1

Question 14

In what ways was the tool approachable or easy to understand?

Id

In what ways was the tool
approachable or easy to
understand?

Supporting
non-
programmers

Natural
Language &
Terminology

Asset
Reuse

Playtesting
and
Debugging Features Documentation

1

The natural language used to
write dialog is very
approachable. The barks are a
particularly useful feature for
approachability. They enhance
dialog greatly while being very
simple to use! 1 1

2

It is easy due to the fact that its
practically the same as just
reading a script.
In terms of use it is easy as most
things are delt with
automatically, just need to
attach a the action script. 1 1

3

The use of the txt files was very
seamless and easy to
understand. The files within the
project are organized and it is
easy to find what you need.
Since an NPC prefab is already
created for you, it is easy to add
new characters to the scene.
Having a welcome scene also
helps introduce the user to the
tool more gently. 1 1 1

4

It was easy as I was handling
only a couple of text files. I could
naturally type out the scene the
scene I wanted so I could
preplan beforehand what the
scene should look like and then
directly implement it. The
example scene was more than
enough to figure out how to
construct a scene 1 1 1 1

5

Most functions handled under
the hood by the plugin such as
emote visibility and camera
lerps. 1 1

6

The Manu-Scriptscriptwriter
Testing Manual was absolutely
invaluable. The fact that most of
the work with the tool was
confined to editing .txt files
made it particularly
approachable, and knowing
where exactly I'd be working
within Unity (the Design, 1 1 1

Resources, and Scenes folders
within the Assets folder) and
what exactly I'd be doing in
them made working in an engine
I have no experience with much
less intimidating.

7

It was easy to understand in
terms of it having the Manual
with it which explained how to
use it. Once I had read that I
found it easy to use.
Having the templates provided
also helped with understanding
how it worked as I could
reference what I was doing to
something already made to
check if I was using it right (e.g. I
forgot to put "When the Player
talks to Target" with the first
NPC I made, looked at the script
for Daniel and realised my
mistake) 1 1

8

Once I understood everything It
was pretty simple to use, It was
just a case of learning how it
worked that proved slightly hard 1

9

Manual given was very easy to
read and any issues were
completely user error (not
knowing you can't have an
empty line of code, not knowing
to not use quotation marks, etc).
After a bit of trial and error I
completely got the hang of it
and was able to utilise every
provided feature. 1 1

10

The tool was immediately clear
and simple to understand, given
basic unity experience. The
documentation was clear and
precise and I was able to install
it, get it running and start
editing scenes within less than
20 minutes (including unity
install time). I think even
newcomers to unity and code
would be able to approach a
simple narrative very easily with
this tool. 1

11
I have next to no knowledge of
coding or using an engine that 1

would allow me to create a
functioning scene, but through
picking through the available
items and using the tools laid
out in a clear and easy to
navigate system, I was able to
produce a functional end
product with no prior
knowledge.

12

I found it easy to understand
how to change dialogue, set
new things up, etc. As a system
it's very friendly for designers to
get into immediately and start
changing things. 1 1

13

Loved that everything was
clearly labeled and sectioned
within the inspector panel. It
made renaming or adding in
different .TXT files very intuitive.
Along with making a new object
interactable very simple. 1 1

14

My favourite approachability
features revolve around
anything that keeps the user in
the unity application more. The
ability to right click and select
“make object interactable” is a
great example, and really
alleviates a new users issues
with the Unity UI (I tried to
make a text box without it, and
struggled to get the scaling
correct), whilst also being
logically where you’d expect it (I
want to do a thing with this
object - > right click the object -
> select the do thing option - > it
now does the thing!).
Additionally, the integrated
camera options really help avoid
a new player needing to fuss
with the Unity UI, and help
scenes feel much more alive. 1 1 1

15

Your manual was well written
and to the point! Any errors I
encountered were my own fault
for skipping ahead and refusing
to read. 1

 8 4 4 3 3 9

Question 15

In what ways could the tool be improved to be more approachable or easier to understand?

Id

In what ways could the tool be
improved to be more
approachable or easier to
understand?

Supporting
non-
programmers

Natural
Language &
Terminology

Asset
Reuse

Playtesting
and
Debugging Features Documentation

1

Having to use a separate editor
for the text files adds an extra
layer of complexity, so being
able to edit directly in Unity
would make the tool more
approachable as a user. 1

2

Either slightly less rigidity with
punctuation/new lines, or some
debug error checking to help
find the issue/warn users. If an
action script accidentally was
edited and ended with an empty
line, could result in game
crashes. 1 1

3

I believe having a
demonstration/tutorial video
creating a scene would be more
than sufficient in making the
tool more approachable as the
player can practice using the
tool by copying the creator's
tutorial. If there is any confusion
they are able to rewatch the
video as many times as
necessary. This would remove
needing an in-person
demonstration to each writer
and save a significant amount of
time. 1

4

Maybe providing these
commands in a debug log would
be nice or some way to output
these commands/schema? That
way I don’t need to look back 1

and forth at a manual I can just
look at Unity directly?

5

Restructuring the guide to put a
emphasis on case/punctuation
sensitive to avoid common user
bugs if this little caveat cannot
be changed.

Object names could be required
to be in ALL CAPS so that there
is a better differentiation
between dialogue lines and
variable changes

Emotions can be shown for a
certain amount of seconds set
by the designer before being
turned off, or have them be
controlled by the designer to
disappear upon the next line of
dialogue, as emotions can
overlap and overstay if the
player skips through lines of
dialogue on repeat play through.

More emotions can be added
overtime such as question marks
for more intricate cutscenes

Maybe some syntax in the game
world when the script wont start
due to a grammatical issue.
Though this is a minor change
out of the list.

Within the NPC prefabs, being
able to spawn and place a
camera in that prefab and then
giving it a object name such as
camera 2 could maybe allow
designers to allow for more
cinematic camera angles when
using the line the camera
focuses on Kacy (Camera 2)
 1 1 1 1 1

6 Little comes to mind.

7

N/A - I can't think of a way to
make it more
approachable/easier to
understand. I think it explains
itself well in the manual, even

just to downloading the Game
Engine (Unity). This could be
because of my experience with
Twine and RenPy though.

8

Mostly documentation,
Explaining what is needed when
creating a new txt file for the
dialogue and on setting up new
scenes. I tried setting up a new
scene and ran into some
difficulty setting everything up,
eventually I did get everything
working but this was again
thanks to my prior knowledge
with Unity and Game Engines 1

9

Can't think of any, the only way
it could be more approachable is
through being more familiar
with the software myself, which
is no fault of yours. 1

10

I genuinely can't think of
anything - even before I opened
the documentation, it was
immediately clear how it worked
and applied itself to the
provided test scenes. Short of it
having a step-by-step tutorial
popup on install, I don't think it
could be any clearer. 1

11

A user guide could potentially be
useful, that appears on initial
startup to explain the uses of
each tool- although this would
only be necessary if the user had
never used anything related to
coding before. 1 1

12

While you said i shouldnt go into
the code for me at least knowing
how some things work helps me
to work with them, i think
having an API reference or
explainations of what each
component does could be
helpful for users (or
commenting the code or doing
summaries for functions users
might touch), along with step by
step explaintions of how to set
stuff up.

While the PDF is good i think 1

theres a way to include docs like
that within unity which could
make it more user friendly.

13 Same as previously stated. 1 1

14

As someone used to coding, the
lack of highlighting for text in
the code editor makes it harder
to distinguish what is the target,
and what is the action. Maybe a
simple VSCode/notepad++
plugin could help?
However, given the aim of
simplicity, having to leave the
unity interface at all can be
intimidating.
1) I think a tutorial in Unity
would help, especially for
people unfamiliar with Unity’s
UI. Something along the lines of
a. NPC: Hey there, I’m currently
talking from script 1, swap to
script 2 to hear a joke! To swap,
click on me in the hierarchy tab
(with the game preview
stopped), then click on the script
box in the bottom right. There
should be an option called
NPCScript2. Select that, then
preview the application again!
2) Maybe try and avoid the need
for text files all together. Whilst
the natural language might read
nicer, I personally find it more
confusing during the writing
scenes process. Also, it makes it
harder for me to jump into the
middle of a file I’ve written, as
the break points are less clear. I
don’t have any experience with
Unity, but I played around with
it for a little bit and managed to
create a custom script (using C#)
that had the following UI. The
Dialogue Box and Text was just
how I linked to the text box, so
ignore that, but the dialogue
lines array is the list of lines that
an NPC responds with in
sequence. Maybe a solution
similar, where you add “steps”
with a drop down for what 1 1 1 1

event type it is, what is doing it,
and a field to the right for the
details would be. (Example
mockup, with each section being
a dropdown, except dialogue
being free text)

15

I feel like the best way to go
about this would be having a
proper front end program for
the system, though that would
be a lot of work lol. I find most
people who don't have a lot of
programming experience are
much happier to use a program
with a ui than a tool, yknow?
Perfectly accessible and
approachable for someone like
me. Maybe include details like
being able to choose text colour
in the main manual also. 1 1

 6 3 1 3 1 10

Question 16

Did you encounter any bugs or unexpected behaviour while working with the tool? If so, what

happened, and how was it caused?

Id

Did you encounter any bugs or
unexpected behaviour while
working with the tool? If so,
what happened, and how was it
caused? None In-Game UI User Error

Empty
Lines

Plugin
UI Gameplay

1

I encountered an issue where
the name box of the speaking
character would be in the wrong
position and as a result end up
behind the center of the main
dialog box. The name box would
update correctly, but not be
visible during play. 1

2

Small issues with punctuation or
new lines. Example having a text
action script with the last line 1 1

being empty reports an issue
with index being out of bounds.

3

Adding a space at the end of the
txt file blocks the user from
witnessing the interaction
between an NPC. 1

4 N/A 1

5

Punctuation sensitive with
missing full stops breaking the
script 1

6

When searching for a present
Action Script though the target
button beside the "Action
Script" property, the search
function could not locate the
file. When attempted via
dragging and dropping the
Action Script file into the
property instead, this worked
fine. 1

7 No 1

8

I did encounter some errors but
they dissapeared once I
understood what i was doing
and how things worked 1 1

9

When trying to interact with
NPCs in the "Welcome" room,
no text would appear and the
error message "Index was
outside the bounds of the array"
would be at the bottom of the
screen. This however was not at
all a problem with any other
rooms or entities. 1

10

Visual studio did briefly refuse
to open the script - but then I
closed and re-opened it and it
suddenly worked, so I don't
think that's a problem with the
tool so much as my computer.
Other than that I didn't
encounter any errors! 1

11 No. 1

12
Not any that you don't know
about 1

13

Had errors trying to load the
Manuscript into Unity 6 despite
following the tutorial the PDF
provided had. I found that some
of the objects really did not
want to become interactable 1 1

until I tried it a few times. Along
with i kept running off the stage
due to some floaty controls.

14

Barks seem to scale how long
they appear with sentence
length. This is good for
readability, but makes convos
desync, and also the initial
message appears at the same
time rather than separate like a
normal convo.
The interactable icon for NPC’s
appeared on top of the Barks,
whereas in my opinion they
could be hidden whilst the
dialogue is progressing (maybe
add an option so that pressing
enter hurries the barks along,
with an enter indicator on the
bark implying that).
Lastly I tried to run the welcome
scene, but had the following
error on load, and no dialogue
would happen. 1 1

15

Not while working with it, but
for some reason the 'welcome'
test room just did NOT work.
Like I was spamming enter and
every key I could think of and
none of them were letting me
talk to Matt or the cat. I looked
at it and I could not for the life
of me figure out why. 1

 4 2 3 7 2 1

